K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 9 2020

          Bài làm :

a) 32x+1 = 27

<=> 32x+1 = 33

<=> 2x+1=3

<=> 2x=2

<=> x=1

Vậy x=1

b) x50 = x

<=> x50 - x = 0

\(\Leftrightarrow x\left(x^{49}-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x^{49}-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x^{49}=1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)

Vậy x=0 hoặc x=1

27 tháng 9 2020

32x + 1 = 27

32x = 9

x = 1

x50 = x

x49 . x = x

x49 = x : x

x49 = 1

Thỏa mãn điều kiện \(x\le1;x\ge-1\)

\(X=\left\{-1,0,1\right\}\)

25 tháng 12 2018

11 tháng 6 2021

số thừa số có trong tích trên là:

 ( 482-2) :10+1=49( thừa số)

 số cặp có tích là 4 là:

 49: 2= 24 dư 1 thừa số

 có 24 cặp có tích tận cùng là 4, dư ra 1 thừa số có tận cùng là 2

vậy tích trên có tận cùng là: 4x 2= 8

  Đáp số: 8

11 tháng 6 2021

Tích trên có:

( 482 -2 ) : 10 + 1 = 49 ( thừa số )

Cứ 7 số tận cùng là 2 cho ta tích có tận cùng là 8 .

Vậy 49 số tận cùng 2 chia được:

49 : 7 = 7 ( nhóm )

A =  2x 12x22 x32 x42x......x 482

A= ( 2 x 12 x 22 x 32 x 42 x 52 x 62 ) x .....x ( 422 x 432 x 442 x 452 x 462 x 472 x 482 )

A = (...8) x (...8)

A = (....8 ) x 7

A = (....6)

4 tháng 4 2022

bn có giải đc ko?

4 tháng 4 2022

d. Áp dụng BĐT Caushy Schwartz ta có:

\(x+y+\dfrac{1}{x}+\dfrac{1}{y}\le x+y+\dfrac{\left(1+1\right)^2}{x+y}=x+y+\dfrac{4}{x+y}\le1+\dfrac{4}{1}=5\)

-Dấu bằng xảy ra \(\Leftrightarrow x=y=\dfrac{1}{2}\)

1: Để A>0 thì x-1<0

hay x<1

Kết hợp ĐKXĐ, ta được: \(0\le x< 1\)

 

29 tháng 8 2021

1) Để A > 0 thì:

\(x-1< 0\Leftrightarrow x< 1\)

\(\Rightarrow0\le x< 1\) và \(x\ne1\)

2) \(A=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}=1+\dfrac{2}{\sqrt{x}-1}\)

Để A<1 thì \(\dfrac{2}{\sqrt{x}-1}< 0\)

\(\Rightarrow\sqrt{x}-1< 0\Leftrightarrow\sqrt{x}< 1\)

Mà x\(\ge0,x\ne1\)

\(\Rightarrow0\le x< 1\)

NV
11 tháng 8 2021

ĐKXĐ: \(x\ge0;x\ne4\)

\(A=\dfrac{x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\dfrac{\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}+\dfrac{\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\dfrac{x+2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{\sqrt{x}}{\sqrt{x}-2}\)

b. \(x=36\Rightarrow A=\dfrac{\sqrt{36}}{\sqrt{36}-2}=\dfrac{6}{6-2}=\dfrac{3}{2}\)

c. \(A=-\dfrac{1}{3}\Rightarrow\dfrac{\sqrt{x}}{\sqrt{x}-2}=-\dfrac{1}{3}\Rightarrow3\sqrt{x}=2-\sqrt{x}\)

\(\Rightarrow4\sqrt{x}=2\Rightarrow\sqrt{x}=\dfrac{1}{2}\Rightarrow x=\dfrac{1}{4}\)

d. \(A>0\Rightarrow\dfrac{\sqrt{x}}{\sqrt{x}-2}>0\Rightarrow\sqrt{x}-2>0\Rightarrow x>4\)

e. \(A=\dfrac{\sqrt{x}-2+2}{\sqrt{x}-2}=1+\dfrac{2}{\sqrt{x}-2}\in Z\Rightarrow\sqrt{x}-2=Ư\left(2\right)\)

\(\Rightarrow\sqrt{x}-2=\left\{-2;-1;1;2\right\}\)

\(\Rightarrow\sqrt{x}=\left\{0;1;3;4\right\}\Rightarrow x=\left\{0;1;9;16\right\}\)

a: Ta có: \(A=\dfrac{x}{x-4}+\dfrac{1}{\sqrt{x}-2}+\dfrac{1}{\sqrt{x}+2}\)

\(=\dfrac{x+\sqrt{x}+2+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\dfrac{\sqrt{x}}{\sqrt{x}-2}\)

b: Thay x=36 vào A, ta được:

\(A=\dfrac{6}{6-2}=\dfrac{6}{4}=\dfrac{3}{2}\)

c: Để \(A=-\dfrac{1}{3}\) thì \(3\sqrt{x}=-\sqrt{x}+2\)

\(\Leftrightarrow4\sqrt{x}=2\)

hay \(x=\dfrac{1}{4}\)

11 tháng 8 2023

\(A=\dfrac{x^2+x}{x^2-2x+1}:\left(\dfrac{x+1}{x}-\dfrac{1}{1-x}+\dfrac{2-x^2}{x^2-x}\right)\left(1\right)\)

a) A xác định \(\Leftrightarrow\left\{{}\begin{matrix}x\ne0\\x\ne1\end{matrix}\right.\)

\(\left(1\right)\Rightarrow A=\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}:\left(\dfrac{x+1}{x}+\dfrac{1}{x-1}+\dfrac{2-x^2}{x\left(x-1\right)}\right)\)

\(\Rightarrow A=\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}:\left(\dfrac{\left(x+1\right)\left(x-1\right)+x+2-x^2}{x\left(x-1\right)}\right)\)

\(\Rightarrow A=\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}:\left(\dfrac{x^2-1+x+2-x^2}{x\left(x-1\right)}\right)\)

\(\Rightarrow A=\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}:\left(\dfrac{x+1}{x\left(x-1\right)}\right)\)

\(\Rightarrow A=\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}.\dfrac{x\left(x-1\right)}{x+1}=\dfrac{x^2}{x+1}\)

b) Để \(A=-\dfrac{1}{2}\)

\(\Leftrightarrow\dfrac{x^2}{x+1}=-\dfrac{1}{2}\left(x\ne-1\right)\)

\(\Leftrightarrow2x^2=-\left(x+1\right)\)

\(\Leftrightarrow2x^2+x+1=0\)

\(\Delta=1-8=-7< 0\)

Nên phương trình trên vô nghiệm \(\left(x\in\varnothing\right)\)

c) Để \(A< 1\) 

\(\Leftrightarrow\dfrac{x^2}{x+1}< 1\)

\(\Leftrightarrow x^2< x+1\left(x\ne-1\right)\)

\(\Leftrightarrow x^2-x-1< 0\)

\(\Leftrightarrow x^2-x+\dfrac{1}{4}-\dfrac{1}{4}-1< 0\)

\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2-\dfrac{5}{4}< 0\)

\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2< \dfrac{5}{4}\)

\(\Leftrightarrow-\dfrac{\sqrt[]{5}}{2}< x-\dfrac{1}{2}< \dfrac{\sqrt[]{5}}{2}\)

\(\Leftrightarrow\dfrac{-\sqrt[]{5}+1}{2}< x< \dfrac{\sqrt[]{5}+1}{2}\)

d) Để A nguyên

\(\Leftrightarrow\dfrac{x^2}{x+1}\in Z\)

\(\Leftrightarrow x^2⋮x+1\)

\(\Leftrightarrow x^2-x\left(x+1\right)⋮x+1\)

\(\Leftrightarrow x^2-x^2+x⋮x+1\)

\(\Leftrightarrow x⋮x+1\)

\(\Leftrightarrow x-x-1⋮x+1\)

\(\Leftrightarrow-1⋮x+1\)

\(\Leftrightarrow x+1\in\left\{-1;1\right\}\)

\(\Leftrightarrow x\in\left\{-2;0\right\}\left(x\in Z\right)\)

11 tháng 8 2023

!ERROR 404!

23 tháng 10 2021

a: \(A=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}+\dfrac{\sqrt{x}-1}{\sqrt{x}+1}-\dfrac{3\sqrt{x}+1}{\sqrt{x}-1}\)

\(=\dfrac{-2\sqrt{x}\left(\sqrt{x}+1\right)+x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{-2x-2\sqrt{x}+x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{-x-4\sqrt{x}+1}{x-1}\)

Bài 1:

Ta có: \(4-2\left(x+1\right)=2\)

\(\Leftrightarrow2\left(x+1\right)=2\)

\(\Leftrightarrow x+1=1\)

hay x=0

Bài 2: 

Ta có: \(\left|2x-3\right|-1=2\)

\(\Leftrightarrow\left|2x-3\right|=3\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-3=3\\2x-3=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=6\\2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=0\end{matrix}\right.\)

24 tháng 4 2022

chưa biết