Giải pt \(3\left(x^2+x\right)^2-2x^2-2x=0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


d) \(PT\Leftrightarrow x\left(2x-7\right)-4\left(x-7\right)=0\)
\(\Leftrightarrow\left(2x-7\right)\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-7=0\\x-4=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{2}\\x=4\end{matrix}\right.\)
Vậy: \(S=\left\{\dfrac{7}{2};4\right\}\)
e) \(PT\Leftrightarrow\left(2x-5-x-2\right)\left(2x-5+x+2\right)=0\)
\(\Leftrightarrow\left(x-7\right)\left(3x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-7=0\\3x-3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=7\\x=1\end{matrix}\right.\)
Vậy: \(S=\left\{7;1\right\}\)
f) \(PT\Leftrightarrow x\left(x-1\right)-3\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)
Vậy: \(S=\left\{1;3\right\}\)

a: =(x-3)(2x+5)
b: \(\Leftrightarrow\left(x-2\right)\left(x+2+3-2x\right)=0\)
=>(x-2)(5-x)=0
=>x=2 hoặc x=5
c: =>x-1=0
hay x=1

Ta có : \(\frac{2}{2x-6}+\frac{1}{x+2}+\frac{2.x}{\left(x+1\right).\left(3-x\right)}=0\)
ĐKXĐ : x \(\ne\)-1 ; x \(\ne\)-2 ; x \(\ne\)3
MTC : ( x + 1 ) . ( x+ 2 ) . ( x - 3 )
<=> ( x + 1 ) . ( x + 2 ) + ( x + 1 ) . ( x + 3 ) - 2.x. ( x + 2 ) = 0
<=> x2 + x + 2.x + 2 + x2 -3.x + x -3 - 2.x2 -4.x = 0
<=> -3.x = 1
<=> x = \(\frac{-1}{3}\)
Vậy S = { \(\frac{-1}{3}\)}
ĐKXĐ: x khác 3, x khác -1
\(\frac{2}{2x-6}+\frac{2}{2x+2}+\frac{2}{\left(x+1\right)\left(3-x\right)}=0\)
<=> \(\frac{-1}{3-x}+\frac{1}{x+1}+\frac{2}{\left(x+1\right)\left(3-x\right)}=0\)
<=> \(\frac{-x-1}{\left(3-x\right)\left(x+1\right)}+\frac{3-x}{\left(3-1\right)\left(x+1\right)}+\frac{2}{\left(x+1\right)\left(3-x\right)}=0\)
<=> \(\frac{-2x+4}{\left(3-x\right)\left(x+1\right)}=0\)
<=> -2x+4=0
<=>x=-2
vậy ....

ĐKXĐ: ...
\(\left(\dfrac{x-1}{x+2}\right)^2-4\left(\dfrac{x+2}{x-3}\right)^2+3\left(\dfrac{x-1}{x-3}\right)=0\)
Đặt \(\left\{{}\begin{matrix}\dfrac{x-1}{x+2}=a\\\dfrac{x+2}{x-3}=b\end{matrix}\right.\)
\(\Rightarrow a^2-4b^2+3ab=0\Leftrightarrow\left(a-b\right)\left(a+4b\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a-b=0\\a+4b=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\dfrac{x-1}{x+2}-\dfrac{x+2}{x-3}=0\\\dfrac{x-1}{x+2}+\dfrac{4x+8}{x-3}=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(x-1\right)\left(x-3\right)-\left(x+2\right)^2=0\\\left(x-\right)\left(x-3\right)+4\left(x+2\right)^2=0\end{matrix}\right.\)
\(\Leftrightarrow...\)

Lời giải:
1.
PT $\Leftrightarrow (x^2+5x)^2+2(x^2+5x)-24=0$
$\Leftrightarrow t^2+2t-24=0$ (đặt $x^2+5x=t$)
$\Leftrightarrow (t-4)(t+6)=0$
$\Rightarrow t-4=0$ hoặc $t+6=0$
Nếu $t-4=0\Leftrightarrow x^2+5x-4=0$
$\Leftrightarrow x=\frac{-5\pm \sqrt{41}}{2}$
Nếu $t+6=0$
$\Leftrightarrow x^2+5x+6=0$
$\Leftrightarrow (x+2)(x+3)=0\Rightarrow x=-2$ hoặc $x=-3$
2.
PT $\Leftrightarrow (x^2-4x+1)^2+2(x^2-4x+1)-3=0$
$\Leftrightarrow t^2+2t-3=0$ (đặt $x^2-4x+1=t$)
$\Leftrightarrow (t-1)(t+3)=0$
$\Rightarrow t-1=0$ hoặc $t+3=0$
Nếu $t-1=0\Leftrightarrow x^2-4x=0\Leftrightarrow x(x-4)=0$
$\Rightarrow x=0$ hoặc $x=4$
Nếu $t+3=0\Leftrightarrow x^2-4x+4=0$
$\Leftrightarrow (x-2)^2=0\Leftrightarrow x=2$
giải pt sau \(\left(\dfrac{x+1}{x-2}\right)^2-3\left(\dfrac{2x-4}{x-4}\right)^2+\dfrac{x+1}{x-4}=0\)

ĐKXĐ: \(x\ne\left\{2;4\right\}\)
Đặt \(\left\{{}\begin{matrix}\dfrac{x+1}{x-2}=a\\\dfrac{x-2}{x-4}=b\end{matrix}\right.\) \(\Rightarrow\dfrac{x+1}{x-4}=ab\)
Phương trình trở thành:
\(a^2-12b^2+ab=0\)
\(\Leftrightarrow a^2+4ab-3ab-12b^2=0\)
\(\Leftrightarrow a\left(a+4b\right)-3b\left(a+4b\right)=0\)
\(\Leftrightarrow\left(a-3b\right)\left(a+4b\right)=0\Leftrightarrow\left[{}\begin{matrix}a-3b=0\\a+4b=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{x+1}{x-2}-\dfrac{3\left(x-2\right)}{x-4}=0\\\dfrac{x+1}{x-2}+\dfrac{4\left(x-2\right)}{x-4}=0\end{matrix}\right.\)
Bạn tự quy đồng và hoàn thành phần còn lại nhé

Đặt \(x^2-2x=a\) pt trở thành:
\(a^2-6a+5=0\Rightarrow\left[{}\begin{matrix}a=1\\a=5\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x^2-2x=1\\x^2-2x=5\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-2x-1=0\\x^2-2x-5=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=1\pm\sqrt{2}\\x=1\pm\sqrt{6}\end{matrix}\right.\)

b: \(\Leftrightarrow\left(x^2-2x+1-1\right)^2-2\left(x-1\right)^2-1=0\)
\(\Leftrightarrow\left[\left(x-1\right)^2-1\right]^2-2\left(x-1\right)^2-1=0\)
\(\Leftrightarrow\left(x-1\right)^4-2\left(x-1\right)^2+1-2\left(x-1\right)^2-1=0\)
\(\Leftrightarrow\left(x-1\right)^2\cdot\left(x-3\right)\left(x+1\right)=0\)
hay \(x\in\left\{1;3;-1\right\}\)
a: \(\Leftrightarrow2x^3-3x-10=-2\left(8-12x+6x^2-x^3\right)\)
\(\Leftrightarrow2x^3-3x-10=-16+24x-12x^2+2x^3\)
\(\Leftrightarrow-3x-10+16-24x+12x^2=0\)
=>\(12x^2-27x+6=0\)
hay \(x\in\left\{2;\dfrac{1}{4}\right\}\)
Lời giải:
$3(x^2+x)^2-2x^2-2x=0$
$\Leftrightarrow 3(x^2+x)^2-2(x^2+x)=0$
$\Leftrightarrow (x^2+x)[3(x^2+x)-2]=0$
$\Leftrightarrow x(x+1)(3x^2+3x-2)=0$
\(\Rightarrow \left[\begin{matrix} x=0\\ x+1=0\\ 3x^2+3x-2=0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=0\\ x=\frac{-3\pm \sqrt{33}}{6}\\ x=-1\end{matrix}\right.\)