giải ptlg
\(2cosx-\left|sinx\right|=1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
\(2sin\left(x+\dfrac{\pi}{6}\right)+sinx+2cosx=3\)
\(\Leftrightarrow\sqrt{3}sinx+cosx+sinx+2cosx=3\)
\(\Leftrightarrow\left(\sqrt{3}+1\right)sinx+3cosx=3\)
\(\Leftrightarrow\sqrt{13+2\sqrt{3}}\left[\dfrac{\sqrt{3}+1}{\sqrt{13+2\sqrt{3}}}sinx+\dfrac{3}{\sqrt{13+2\sqrt{3}}}cosx\right]=3\)
Đặt \(\alpha=arcsin\dfrac{3}{\sqrt{13+2\sqrt{3}}}\)
\(pt\Leftrightarrow\sqrt{13+2\sqrt{3}}sin\left(x+\alpha\right)=3\)
\(\Leftrightarrow sin\left(x+\alpha\right)=\dfrac{3}{\sqrt{13+2\sqrt{3}}}\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\alpha=arcsin\dfrac{3}{\sqrt{13+2\sqrt{3}}}+k2\pi\\x+\alpha=\pi-arcsin\dfrac{3}{\sqrt{13+2\sqrt{3}}}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=k2\pi\\x=\pi-2arcsin\dfrac{3}{\sqrt{13+2\sqrt{3}}}+k2\pi\end{matrix}\right.\)
Vậy phương trình đã cho có nghiệm:
\(x=k2\pi;x=\pi-2arcsin\dfrac{3}{\sqrt{13+2\sqrt{3}}}+k2\pi\)
2.
\(\left(sin2x+cos2x\right)cosx+2cos2x-sinx=0\)
\(\Leftrightarrow2sinx.cos^2x+cos2x.cosx+2cos2x-sinx=0\)
\(\Leftrightarrow\left(2cos^2x-1\right)sinx+cos2x.cosx+2cos2x=0\)
\(\Leftrightarrow cos2x.sinx+cos2x.cosx+2cos2x=0\)
\(\Leftrightarrow cos2x.\left(sinx+cosx+2\right)=0\)
\(\Leftrightarrow cos2x=0\)
\(\Leftrightarrow2x=\dfrac{\pi}{2}+k\pi\)
\(\Leftrightarrow x=\dfrac{\pi}{4}+\dfrac{k\pi}{2}\)
Vậy phương trình đã cho có nghiệm \(x=\dfrac{\pi}{4}+\dfrac{k\pi}{2}\)
Đk: \(\left\{{}\begin{matrix}x\ne\dfrac{\pi}{2}+m2\pi\\x\ne\dfrac{\pi}{4}+n\pi\end{matrix}\right.\left(m,n\in Z\right)\)
PT \(\Leftrightarrow1=2\sqrt{2}sinx.cosx\left(sinx-cosx\right)+2cos^2x\)
\(\Leftrightarrow\sqrt{2}.2sinx.cosx\left(sinx-cosx\right)+\left(2cos^2x-1\right)=0\)
\(\Leftrightarrow\sqrt{2}sin2x\left(sinx-cosx\right)+\left(cosx-sinx\right)\left(cosx+sinx\right)=0\)
\(\Leftrightarrow\sqrt{2}sin2x=sinx+cosx\)
\(\Leftrightarrow\sqrt{2}sin2x=\sqrt{2}sin\left(x+\dfrac{\pi}{4}\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=x+\dfrac{\pi}{4}+k2\pi\\2x=\pi-x-\dfrac{\pi}{4}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{4}+k2\pi\\x=\dfrac{\pi}{4}+k\dfrac{2\pi}{3}\end{matrix}\right.\left(k\in Z\right)\)
ĐKXĐ: \(sinx\ne0\)
\(2cos^2x-3cosx+1=sinx-2sinx^2cosx+2cos^2x.sinx\)
\(\Leftrightarrow2cos^2x\left(1-sinx\right)+1-sinx-3cosx+2sin^2x.cosx=0\)
\(\Leftrightarrow\left(1-sinx\right)\left(2cos^2x+1\right)-cosx\left(3-2sin^2x\right)=0\)
\(\Leftrightarrow\left(1-sinx\right)\left(2cos^2x+1\right)-cosx\left(1+2cos^2x\right)=0\)
\(\Leftrightarrow\left(1-sinx-cosx\right)\left(2cos^2x+1\right)=0\)
\(\Leftrightarrow sinx+cosx=1\)
\(\Leftrightarrow sin\left(x+\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\frac{\pi}{4}=\frac{\pi}{4}+k2\pi\\x+\frac{\pi}{4}=\frac{3\pi}{4}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=k2\pi\left(ktm\right)\\x=\frac{\pi}{2}+k2\pi\end{matrix}\right.\)
a ) \(2cosx-3sinx+2=0\)
\(\Leftrightarrow2cosx-3sinx=-2\)
\(\Leftrightarrow\dfrac{2}{\sqrt{13}}cosx-\dfrac{3}{\sqrt{13}}sinx=-\dfrac{2}{\sqrt{13}}\)
Thấy : \(\left(\dfrac{2}{\sqrt{13}}\right)^2+\left(\dfrac{-3}{\sqrt{13}}\right)^2=1\) nên tồn tại \(\alpha\) t/m :
\(sin\alpha=\dfrac{2}{\sqrt{13}};cos\alpha=\dfrac{-3}{\sqrt{13}}\) . . Khi đó : \(sin\alpha.cosx+cos\alpha.sinx=\dfrac{-2}{\sqrt{13}}\)
\(\Leftrightarrow sin\left(\alpha+x\right)=\dfrac{-2}{\sqrt{13}}\) ( p/t cơ bản )
\(\Leftrightarrow\left(2cosx-sinx\right)\left(1+sinx\right)=1-sin^2x\)
\(\Leftrightarrow\left(2cosx-sinx\right)\left(1+sinx\right)-\left(1-sinx\right)\left(1+sinx\right)=0\)
\(\Leftrightarrow\left(1+sinx\right)\left(2cosx-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=-1\\cosx=\frac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{2}+k2\pi\\x=\frac{\pi}{3}+k2\pi\\x=-\frac{\pi}{3}+k2\pi\end{matrix}\right.\)
Nghiệm dương nhỏ nhất là \(x=\frac{\pi}{3}\)
Đặt \(\left\{{}\begin{matrix}\left|sinx\right|=a\ge0\\cosx=b\end{matrix}\right.\) ta được hệ:
\(\left\{{}\begin{matrix}2b-a=1\\a^2+b^2=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}b=\frac{a+1}{2}\\a^2+b^2=1\end{matrix}\right.\)
\(\Rightarrow a^2+\left(\frac{a+1}{2}\right)^2=1\)
\(\Leftrightarrow5a^2+2a-3=0\Rightarrow\left[{}\begin{matrix}a=-1\left(l\right)\\a=\frac{3}{5}\end{matrix}\right.\) \(\Rightarrow b=\frac{4}{5}\)
\(\Rightarrow cosx=\frac{4}{5}\Rightarrow x=\pm arccos\left(\frac{4}{5}\right)+k2\pi\)