K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 9 2020

A=1/1.2+1/2.6+1/6.5+...+1/99.100

A=1/1.(1/2-1/2+1/6-1/6+...+1/99-1/99+1/100)

A=1/1+1/100

A=101/100

(không biết có đúng không)

6 tháng 4 2023

\(A=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+\dfrac{1}{5\cdot6}+...+\dfrac{1}{99\cdot100}\)

\(A=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{99}-\dfrac{1}{100}\)

\(A=\dfrac{1}{1}-\dfrac{1}{100}\)

\(A=\dfrac{99}{100}\)

\(\cdot\) LÀ DẤU \(\times\)

6 tháng 4 2023

A = \(\dfrac{1}{2}\) + \(\dfrac{1}{6}\) + \(\dfrac{1}{12}\) + \(\dfrac{1}{20}\)\(\dfrac{1}{30}\)+.....+ \(\dfrac{1}{9900}\)

A = \(\dfrac{1}{1\times2}+\dfrac{1}{2\times3}+\dfrac{1}{3\times4}+\dfrac{1}{4\times5}+\dfrac{1}{5\times6}+....+\dfrac{1}{99\times100}\)

A = \(\dfrac{1}{1}-\dfrac{1}{2}\) + \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) - \(\dfrac{1}{4}\) + \(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}\)+......+ \(\dfrac{1}{99}\) - \(\dfrac{1}{100}\)

A = \(\dfrac{1}{1}\) - \(\dfrac{1}{100}\)

A = \(\dfrac{99}{100}\)

4 tháng 5 2023

`A=1/2+1/6+1/12+1/20+1/30+...+1/9900`

`=1/(1xx2)+1/(2xx3)+1/(3xx4)+1/(4xx5)+1/(5xx6)+...+1/(99xx100)`

`=1/1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+...+1/99-1/100`

`=1/1-1/100`

`=100/100-1/100`

`=99/100`

5 tháng 5 2023

A=1/2+1/6+1/12+1/20+1/30+...+1/9900

=1/(1��2)+1/(2��3)+1/(3��4)+1/(4��5)+1/(5��6)+...+1/(99��100)=1/(1xx2)+1/(2xx3)+1/(3xx4)+1/(4xx5)+1/(5xx6)+...+1/(99xx100)

=1/1−1/2+1/2−1/3+1/3−1/4+1/4−1/5+1/5−1/6+...+1/99−1/100=1/11/2+1/21/3+1/31/4+1/41/5+1/51/6+...+1/991/100

=1/1−1/100=1/11/100

=100/100−1/100=100/1001/100

=99/100=99/100

7 tháng 6 2016

Giải 

\(A=1+2+3+4+5+...+99+100\)

Số số hạng của A là: \(\left(100-1\right)\div1+1=100\)(số hạng)

Tổng A là: \(\frac{\left(100+1\right)\times100}{2}=5050\)

Vây A=5050

\(B=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{9900}\)

\(B=\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{99\times100}\)

\(B=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(B=1-\frac{1}{100}=\frac{99}{100}\)

Vậy \(B=\frac{99}{100}\)

7 tháng 6 2016

minh cam thay de hoi sai

ta có: 
1/2+1/6+...+1/9900 
=1/1.2+1/2.3...+1/99.100 
=1-1/2+1/2-1/3+1/3-...+1/99-1/100 
=1-1/100 
=99/100

19 tháng 6 2019

\(A=\frac{1}{2}+\frac{1}{6}+\cdot\cdot\cdot+\frac{1}{9900}\)

\(A=\frac{1}{1\times2}+\frac{1}{2\times3}+\cdot\cdot\cdot+\frac{1}{99\times100}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\cdot\cdot\cdot+\frac{1}{99}-\frac{1}{100}\)

\(A=1-\frac{1}{100}\)

\(A=\frac{99}{100}\)

10 tháng 4 2019

\(A=1+2+3+4+5+...+99+100\)

Dãy trên có số số hạng là:

(100 - 1) + 1 = 100 (số hạng)

Tổng \(A=\frac{\left(100+1\right)\cdot100}{2}=5050\)

\(B=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{9900}\)

\(B=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)

\(B=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(B=1-\frac{1}{100}\)

\(\Rightarrow B=\frac{99}{100}\)

~Học tốt~

20 tháng 4 2017

A:tính số số hạng (100 số).

=>A=(1+100)*100:2=5050.

B=1/1*2+1/2*3+1/3*4+000+1/99*100.

=>B=1-1/2+1/2-1/3+1/3-1/4+...+1/99-1/100.

=>B=1-1/100=99/100.

tk mk nha.đúng 1000% .

-chúc ai tk cho mk học giỏi và may mắn,thanks các bn nhìu-

20 tháng 4 2017

a=100(100+1)/2

B=1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+...+1/99-1/100

B=1-1/100=99/100

6 tháng 5 2016

Câu A tự làm nhé! Tính số số hạng rồi tính tổng

B = 1/1.2 + 1/2.3 + 1/3.4 +.....+ 1/99.100

B = 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 +........+ 1/99 - 1/100

B = 1 - 1/100

B = 99/100