CMR: -0,7.(4343 - 1717) là một số nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(43^{43}-17^{17}\)
\(=43^{40}.43^3-17^{16}.17\)
\(=\overline{.....1}.\overline{.....7}-\overline{.....1}.7\)
\(=\overline{.....7}-\overline{.....7}\)
\(=\overline{.....0⋮}10\)
\(\Rightarrow dpcm\)
\(N=0,7.\left(2007^{2009}-2013^{1999}\right)\)
\(=\frac{7}{10}.\left(2007^{2009}-2013^{1999}\right)\)
N là số tự nhiên thì ta cần chứng minh \(\left(2007^{2009}-2013^{1999}\right)⋮10\)
Ta có: \(2007^{2009}=2007^{4.502}.2007=\overline{...1}.2007=\overline{...7}\)
và \(2013^{1999}=2013^{4.499}.2013^3=\overline{...1}.\overline{...7}=\overline{...7}\)
Do đó \(2007^{2009}\)\(-2013^{1999}=\)\(\overline{...7}-\overline{...7}=\overline{...0}\)
Vậy \(\left(2007^{2009}-2013^{1999}\right)⋮10\)
=> đpcm
Đặt \(-0,7\cdot\left(43^{43}-17^{17}\right)=-\frac{7}{10}\cdot\left(43^{43}-17^{17}\right)=A\)
=> A là số nguyên khi và chỉ khi \(43^{43}-17^{17}⋮10\)
Ta có: 432 tận cùng là 9, chia 10 dư -1
=>4342 chia 10 dư 1
=> 4343 chia 10 dư -1
Chứng mình tương tự ta có 1717 chia 10 dư -1
=> 4343-1717 chia 10 dư: (-1)-(-1)=0
=> 4343-1717 chia hết cho 10.
Vậy A là số nguyên
−0,7.(43^43−17^17)
Ta có : 43^1 = 43 (...3)
43^2 = 1849 (...9)
43^3 = 79507 (...7)
43^4 = 3418801 (...1)
43^5 = (...3) (đã lặp lại chu kì chu kì => 3,9,7,1 tương ứng với các số mũ chia 4 dư 1,2,3,4)
Số mũ 43 chia 4 dư 3 43^43=(...7)
CM hoàn toàn tương tự : 17^17=(...7)
43^43−17^17=(...0)
-7/10 nhân với 1 số tận cùng là 0 ( > 0) cho ta 1 số chia hết cho 7)
Số đó là số nguyên vì nó chia hết cho 7