Với x > y ≥ 0 , biểu thức: \(\dfrac{1}{y-x}\sqrt{x^6\left(x-y\right)^2}\)có kết quả rút gọn là
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{1}{y-x}\cdot\sqrt{x^6\left(x-y\right)^2}\)
\(\dfrac{1}{y-x}\cdot x^3\cdot\left(x-y\right)\)
\(=-x^3\)
5: \(=\dfrac{1}{x-y}\cdot x^3\cdot\left(x-y\right)^2=x^3\left(x-y\right)\)
1) Ta có: \(\left\{{}\begin{matrix}2x-y=3\\x+y=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x=3\\x=-y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-x=-1\end{matrix}\right.\)
Vậy: (x,y)=(1;-1)
2) Ta có: \(A=\dfrac{x+20}{x-4}+\dfrac{2}{\sqrt{x}+2}-\dfrac{6}{\sqrt{x}-2}\)
\(=\dfrac{x+20+2\left(\sqrt{x}-2\right)-6\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{x+20+2\sqrt{x}-4-6\sqrt{x}-12}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{x-4\sqrt{x}+4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{\sqrt{x}-2}{\sqrt{x}+2}\)
a) \(\sqrt{\dfrac{x-2\sqrt{x}+1}{x+2\sqrt{x}+1}}\sqrt{\dfrac{\left(\sqrt{x+1}\right)^2}{\left(\sqrt{x}+1\right)^2}}\)
=\(\dfrac{\sqrt{x}-1}{\sqrt{x}+1};x\ge0\)
b) Ta có: \(\dfrac{x-1}{\sqrt{y}-1}\cdot\sqrt{\dfrac{\left(y-2\sqrt{y}+1\right)^2}{\left(x-1\right)^4}}\)
\(=\dfrac{x-1}{\sqrt{y}-1}\cdot\dfrac{\sqrt{y}-1}{\left(x-1\right)^2}\)
\(=\dfrac{1}{x-1}\)
\(2x^2+3x-5=0\)
\(< =>2x^2-2x+5x-5=0\)
\(< =>2x\left(x-1\right)+5\left(x-1\right)=0\)
\(< =>\left(x-1\right)\left(2x+5\right)=0\)
\(< =>\orbr{\begin{cases}x=1\\x=-\frac{5}{2}\end{cases}}\)
\(\hept{\begin{cases}x+2y=1\\-3x+4y=-18\end{cases}}\)
\(< =>\hept{\begin{cases}-3x-6y=-3\\-3x-6y+10y=-18\end{cases}}\)
\(< =>\hept{\begin{cases}x+2y=1\\10y=-18+3=-15\end{cases}}\)
\(< =>\hept{\begin{cases}x+2y=1\\y=-\frac{3}{2}\end{cases}< =>\hept{\begin{cases}x-3=1\\y=-\frac{3}{2}\end{cases}< =>\hept{\begin{cases}x=4\\y=-\frac{3}{2}\end{cases}}}}\)
Lời giải:
\(A=\frac{x+y}{\sqrt{xy}}: \frac{x-y}{\sqrt{xy}}=\frac{x+y}{\sqrt{xy}}.\frac{\sqrt{xy}}{x-y}=\frac{x+y}{x-y}\)
\(=\frac{1+a+1-a}{1+a-(1-a)}=\frac{2}{2a}=\frac{1}{a}\)
\(=\dfrac{1}{y-x}\cdot x^3\cdot\left(x-y\right)=-x^3\)