X2 +1/4x=0
(x+1/2)(x-1/2)>0
x+3/x-2<0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: (x-3)(x-2)<0
=>x-2>0 và x-3<0
=>2<x<3
b: \(\left(x+3\right)\left(x+4\right)\left(x^2+2\right)\ge0\)
=>(x+3)(x+4)>=0
=>x+3>=0 hoặc x+4<=0
=>x>=-3 hoặc x<=-4
c: \(\dfrac{x-1}{x-2}\ge0\)
=>x-2>0 hoặc x-1<=0
=>x>2 hoặc x<=1
d: \(\dfrac{x+3}{2-x}>=0\)
=>\(\dfrac{x+3}{x-2}< =0\)
=>x+3>=0 và x-2<0
=>-3<=x<2
a: =>x(x+4)>=0
=>x>=0 hoặc x<=-4
b:=>x+3>0
hay x>-3
c: =>(x-1)(x+1)<0
=>-1<x<1
d: \(x^2+1>=1>0\forall x\)
nên \(x\in R\)
e: =>(2x-3)(2x+3)>=0
=>x>=3/2 hoặc x<=-3/2
Ta có : (x - 3)(x - 2) < 0
Nên sảy ra 2 trường hợp : D
Th1 : \(\hept{\begin{cases}x-3< 0\\x-2>0\end{cases}\Rightarrow\hept{\begin{cases}x< 3\\x>2\end{cases}\Rightarrow}2< x< 3}\)
Th2 : \(\hept{\begin{cases}x-3>0\\x-2< 0\end{cases}\Rightarrow\hept{\begin{cases}x>3\\x< 2\end{cases}\left(loại\right)}}\)
Vậy 2 < x < 3
a, \(\Rightarrow x-2\inƯ\left(-3\right)=\left\{\pm1;\pm3\right\}\)
x-2 | 1 | -1 | 3 | -3 |
x | 3 | 1 | 5 | -1 |
b, \(3\left(x-2\right)+13⋮x-2\Rightarrow x-2\inƯ\left(13\right)=\left\{\pm1;\pm13\right\}\)
x-2 | 1 | -1 | 13 | -13 |
x | 3 | 1 | 15 | -11 |
c, \(x\left(x+7\right)+2⋮x+7\Rightarrow x+7\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
x+7 | 1 | -1 | 2 | -2 |
x | -6 | -8 | -5 | -9 |
1. 4x2 + 4x + 2 = (4x2 + 4x + 1) + 1 = (2x + 1)2 + 1
Có: (2x+1)2 ≥ 0 ∀x => (2x+1)2 + 1 ≥ 1 > 0 (đpcm)
3. -x2 + 4x - 5 = -(x2 - 4x + 4) - 1 = -(x - 2)^2 - 1
Có: -(x-2)^2 ≤ 0 => -(x-2)^2 -1 ≤ - 1 < 0 (đpcm)
7. (x+2)(x-5) + 15 = x2 - 3x + 5 = (x2 - 2.x.\(\dfrac{3}{2}\)+ \(\dfrac{9}{4}\)) + \(\dfrac{11}{4}\)
= ( x - \(\dfrac{3}{2}\))^2 + \(\dfrac{11}{4}\) \(\ge\dfrac{11}{4}>0\left(đpcm\right)\)
| 2-4x | = 4x-2
<=> \(\orbr{\begin{cases}\left|2-4x\right|=-2+4x=4x-2\\\left|2-4x\right|=2-4x=4x-2\end{cases}}\)
<=>\(\orbr{\begin{cases}-2+4x=4x-2\\2-4x=4x-2\end{cases}}\)
<=>\(\orbr{\begin{cases}-2+4x-4x+2=0\\2-4x-4x+2=0\end{cases}}\)
<=>\(\orbr{\begin{cases}0=0\\-8x+4=0\end{cases}}\)
<=> x=\(\frac{-4}{-8}=\frac{1}{2}\)
=> \(S=\left\{\frac{1}{2};\infty\right\}\)
2x-7> 3(x-1)
<=>2x-7>3x-3
<=>2x-3x>-3+7
<=>-x>4
<=>x<4
=>S={x/x<4}
1-2x<4(3x-2)
<=>1-2x<12x-8
<=>-2x-12x<-8-1
<=>-14x<-9
<=>x>\(\frac{9}{14}\)
=>S={\(\frac{9}{14}\)}
-3x+2|-4 -x|> 0
<=>\(\orbr{\begin{cases}-3x+2+4+x>0\\-3x+2-4x-x>0\end{cases}}\)
<=>\(\orbr{\begin{cases}-2x+6>0\\-8x+2>0\end{cases}}\)
<=>\(\orbr{\begin{cases}-2x>-6\\-8x>-2\end{cases}}\)
<=>\(\orbr{\begin{cases}x< 3\\x< \frac{1}{4}\end{cases}}\)
=>S={x/x<3;x/x<\(\frac{1}{4}\)}
4x-1|x-2|< 0
<=>\(\orbr{\begin{cases}4x-1-x+2< 0\\4x-1+x-2< 0\end{cases}}\)
<=>\(\orbr{\begin{cases}3x+1< 0\\3x-3< 0\end{cases}}\)
<=>\(\orbr{\begin{cases}3x< -1\\3x< 3\end{cases}}\)
<=>\(\orbr{\begin{cases}x< \frac{-1}{3}\\x< 1\end{cases}}\)
=>S={x/x<\(\frac{-1}{3}\);x/x<1}
x2 + 1/4x = 0
<=> ( x + 1/8 )2 - 1/64 = 0
<=> ( x + 1/8 )2 = 1/64
<=> \(\orbr{\begin{cases}x+\frac{1}{8}=\frac{1}{8}\\x+\frac{1}{8}=-\frac{1}{8}\end{cases}}\)
<=> \(\orbr{\begin{cases}x=0\\x=-\frac{1}{4}\end{cases}}\)
( x + 1/2 ) ( x - 1/2 ) > 0
<=> \(\orbr{\begin{cases}x_1+\frac{1}{2}>0\\x_2-\frac{1}{2}>0\end{cases}}\)hoặc \(\orbr{\begin{cases}x_1+\frac{1}{2}< 0\\x_2-\frac{1}{2}< 0\end{cases}}\)
<=> \(\orbr{\begin{cases}x_1>-\frac{1}{2}\\x_2>\frac{1}{2}\end{cases}}\)hoặc \(\orbr{\begin{cases}x_1< -\frac{1}{2}\\x_2< \frac{1}{2}\end{cases}}\)
<=> x > 1/2 hoặc x < - 1/2
\(\frac{x+3}{x-2}\le0\)
<=> \(\frac{x-2+5}{x-2}\le0\)
<=> 1 + \(\frac{5}{x-2}\le0\)
<=> \(\frac{5}{x-2}\le-1\)
\(\Leftrightarrow x-2\le-5\)
\(\Leftrightarrow x\le-3\)