K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(2x^2-4x+17=2\left(x^2-2x+1\right)+15=2\left(x-1\right)^2+15\)

mà \(\left(x-1\right)^2\ge0\forall x\)

\(\Rightarrow2\left(x-1\right)^2+15\ge15\forall x\)

\(\Rightarrow\sqrt{2\left(x-1\right)^2+15}\ge\sqrt{15}\forall x\)

\(\Rightarrow P\ge\sqrt{15}\forall x\)

\(MinP=\sqrt{15}\Leftrightarrow x-1=0\Leftrightarrow x=1\)

18 tháng 9 2020

Xin đa tạ

18 tháng 9 2020

Ta có: \(P=\sqrt{2x^2-4x+17}\)

    \(\Leftrightarrow P=\sqrt{\left(2x^2-4x+2\right)+15}\)

    \(\Leftrightarrow P=\sqrt{2.\left(x-1\right)^2+15}\)

Vì \(2.\left(x-1\right)^2\ge0\forall x\)\(\Rightarrow\)\(2.\left(x-1\right)^2+15\ge15\forall x\)

     \(\Rightarrow\)\(\sqrt{2.\left(x-1\right)^2+15}\ge\sqrt{15}\)

     \(\Rightarrow\)\(P_{min}=\sqrt{15}\)

Dấu "=" xảy ra khi và chỉ khi: \(2\left(x-1\right)^2=0\)

                                         \(\Leftrightarrow x-1=0\)

                                         \(\Leftrightarrow x=1\)

Vậy \(P_{min}=\sqrt{15}\)\(\Leftrightarrow\)\(x=1\)

14 tháng 9 2020

ko bt tự làm đi!!
 

NV
2 tháng 11 2021

\(2x^2-4x+5=2\left(x^2-2x+1\right)+3=2\left(x-1\right)^2+3\ge3\)

\(\Rightarrow y\ge2+2\sqrt{3}\)

\(y_{min}=2+2\sqrt{3}\) khi \(x=1\)

15 tháng 8 2019

Trong căn thứ nhất là 4x ms đúng chứ nhỉ

15 tháng 8 2019

Nếu đề bài là 4x thì cách giải nè :

2x2 + 4x + 3 = 2.(x2 + 2x +1) + 1 = 2.(x+1)2 + 1 >= 1 ( >= là dấu lớn hơn hoặc bằng )  khi đó căn thứ nhất >= căn 1 =1

x2 + 2x + 3 = (x+1)2 + 2 >=2  khi đó căn thứ 2 >= căn 2

Suy ra y>= 1 + căn 2

Dấu = xảy ra khi x+1=0 khi x=-1

7 tháng 6 2019

Trước hết bằng phép biến đổi tương đương ; ta chứng minh bất đẳng thức phụ sau:

\(\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\ge\sqrt{\left(a+c\right)^2+\left(b+d\right)^2}...\)

Biểu diễn: 

\(y=\sqrt{2}\left(\sqrt{x^2-x+\frac{5}{2}}+\sqrt{x^2-2x+2}\right)\)

  \(=\sqrt{2}\left(\sqrt{\left(x-\frac{1}{2}\right)^2+\frac{9}{4}}+\sqrt{\left(1-x\right)^2+1}\right)\)

  \(\ge\sqrt{2}\sqrt{\left(x-\frac{1}{2}+1-x\right)^2+\left(\frac{3}{2}+1\right)^2}=\sqrt{13}.\)

Vậy giá trị nhỏ nhất của \(y=\sqrt{13}\Leftrightarrow x=\frac{4}{5}.\)

21 tháng 8 2020

a) \(A=\sqrt{4x^2+4x+2}=\sqrt{4x^2+4x+1+1}=\sqrt{\left(2x+1\right)^2+1}\)

Vì \(\left(2x+1\right)^2\ge0\forall x\)\(\Rightarrow\left(2x+1\right)^2+1\ge1\forall x\)

\(\Rightarrow A\ge\sqrt{1}=1\)

Dấu " = " xảy ra \(\Leftrightarrow2x+1=0\)\(\Leftrightarrow2x=-1\)\(\Leftrightarrow x=\frac{-1}{2}\)

Vậy \(minA=1\Leftrightarrow x=\frac{-1}{2}\)

b) \(B=\sqrt{2x^2-4x+5+1}=\sqrt{2x^2-4x+2+3+1}=\sqrt{2\left(x^2-2x+1\right)+4}\)

\(=\sqrt{2\left(x-1\right)^2+4}\)

Vì \(\left(x-1\right)^2\ge0\forall x\)\(\Rightarrow2\left(x-1\right)^2\ge0\forall x\)\(\Rightarrow2\left(x-1\right)^2+4\ge4\forall x\)

\(\Rightarrow B\ge\sqrt{4}=2\)

Dấu " = " xảy ra \(\Leftrightarrow x-1=0\)\(\Leftrightarrow x=1\)

Vậy \(minB=2\Leftrightarrow x=1\)

21 tháng 8 2020

Mơn bạn nha

13 tháng 8 2021

a,\(A=2\sqrt{x^2+x+\dfrac{1}{2}}=2\sqrt{x^2+x+\dfrac{1}{4}+\dfrac{1}{4}}=2\sqrt{\left(x+\dfrac{1}{2}\right)^2+\dfrac{1}{4}}\)

\(=\sqrt{4\left(x+\dfrac{1}{2}\right)^2+1}\ge1\) dấu"=" xảy ra<=>x=-1/2

\(B=\sqrt{2\left(x^2-2x+\dfrac{5}{2}\right)}=\sqrt{2\left[x^2-2x+1+\dfrac{3}{2}\right]}\)

\(=\sqrt{2\left(x-1\right)^2+3}\ge\sqrt{3}\) dấu"=" xảy ra<=>x=1

\(C=\dfrac{x-3}{\sqrt{x-1}-\sqrt{2}}\ge\dfrac{-2}{-\sqrt{2}}=\sqrt{2}\) dấu"=" xảy ra<=>x=1

\(D=x-2\sqrt{x+2}\ge-2\) dấu"=" xảy ra<=>x=-2

 

13 tháng 8 2021

Câu D≥-3 Dấu"=" xảy ra khi x=-1