Tìm max
\(E=\frac{1}{2x-\sqrt{x}+5}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
$A=2x-\sqrt{x}=2(x-\frac{1}{2}\sqrt{x}+\frac{1}{4^2})-\frac{1}{8}$
$=2(\sqrt{x}-\frac{1}{4})^2-\frac{1}{8}$
$\geq \frac{-1}{8}$
Vậy $A_{\min}=-\frac{1}{8}$. Giá trị này đạt tại $x=\frac{1}{16}$
$B=x+\sqrt{x}$
Vì $x\geq 0$ nên $B\geq 0+\sqrt{0}=0$
Vậy $B_{\min}=0$. Giá trị này đạt tại $x=0$
Ta có:
\(A=3.1.\sqrt{2x-1}+x\sqrt{5-4x^2}\)
Áp dụng bất đẳng thức Cô-si cho các cặp số \(1,\sqrt{2x-1}\)và \(x,\sqrt{5-4x^2}\)không âm, ta có:
\(A=3.1.\sqrt{2x-1}+x\sqrt{5-4x^2}\le3.\frac{1+2x-1}{2}+\frac{x^2+5-4x^2}{2}=\frac{-3x^2+6x+5}{2}\)
\(=-\frac{3}{2}.\left(x^2-2x-\frac{5}{3}\right)=-\frac{3}{2}\left(x^2-2x+1\right)+4=-\frac{3}{2}\left(x-1\right)^2+4\le4\)
" =" xảy ra <=> \(\hept{\begin{cases}1=\sqrt{2x-1}\\x=\sqrt{5-4x^2}\\\left(x-1\right)^2=0\end{cases}}\Leftrightarrow x=1\)thỏa mãn
Vậy maxA=4 khi và chỉ khi x=1
1, A= y^3(1-y)^2 = 4/9 . y^3 . 9/4 (1-y)^2
= 4/9 .y.y.y . (3/2-3/2.y)^2
=4/9 .y.y.y (3/2-3/2.y)(3/2-3/2.y)
<= 4/9 (y+y+y+3/2-3/2.y+3/2-3/2.y)^5
=4/9 . 243/3125
=108/3125
Đến đó tự giải
ĐKXĐ: \(-1\le x\le\frac{1}{2}\)
Ta có: \(A=\frac{x}{2}+\sqrt{\left(1+x\right)\left(1-2x\right)}\le\frac{x}{2}+\frac{1+x+1-2x}{2}=1\)
Dấu = xảy ra khi \(1+x=1-2x\Rightarrow x=0\)( Thỏa mãn ĐKXĐ )
A
Áp dụng BĐT cosi ta có
\(\sqrt{\left(2x-1\right).1}\le\frac{2x-1+1}{2}=x\)
\(x\sqrt{5-4x^2}\le\frac{x^2+5-4x^2}{2}=\frac{-3x^2+5}{2}\)
Khi đó
\(A\le3x+\frac{-3x^2+5}{2}=\frac{-3x^2+6x+5}{2}=\frac{-3\left(x-1\right)^2}{2}+4\le4\)
MaxA=4 khi \(\hept{\begin{cases}2x-1=1\\x^2=5-4x^2\\x=1\end{cases}\Rightarrow}x=1\)
B
Áp dụng BĐT cosi ta có :
\(x^2+y^2+z^2\ge\frac{1}{3}\left(x+y+z\right)^2\)
=> \(x+y+z\le\sqrt{3\left(x^2+y^2+z^2\right)}\)
=> \(B\le\frac{xyz.\left(\sqrt{3\left(x^2+y^2+z^2\right)}+\sqrt{x^2+y^2+z^2}\right)}{\left(x^2+y^2+z^2\right)\left(xy+yz+xz\right)}=\frac{xyz.\left(\sqrt{3}+1\right)}{\left(xy+yz+xz\right)\sqrt{x^2+y^2+z^2}}\)
Lại có \(x^2+y^2+z^2\ge3\sqrt[3]{x^2y^2z^2}\); \(xy+yz+xz\ge3\sqrt[3]{x^2y^2z^2}\)
=> \(\sqrt{x^2+y^2+z^2}\left(xy+yz+xz\right)\ge3\sqrt[3]{x^2y^2z^2}.\sqrt{3\sqrt[3]{x^2y^2z^2}}=3\sqrt{3}.xyz\)
=> \(B\le\frac{\sqrt{3}+1}{3\sqrt{3}}=\frac{3+\sqrt{3}}{9}\)
\(MaxB=\frac{3+\sqrt{3}}{9}\)khi x=y=z
E max
\(\Leftrightarrow\frac{1}{2x-\sqrt{x}+5}\) lớn nhất
\(2x-\sqrt{x}+5\) nhỏ nhất
\(=\left(\sqrt{2x}\right)^2-2\cdot\sqrt{2x}\cdot\frac{\sqrt{2}}{4}+\left(\frac{\sqrt{2}}{4}\right)^2-\left(\frac{\sqrt{2}}{4}\right)^2+5\)
\(=\left(\sqrt{2x}-\frac{\sqrt{2}}{4}\right)^2+\frac{39}{8}\)
Ta có \(\left(\sqrt{2x}-\frac{\sqrt{2}}{4}\right)^2+\frac{39}{8}\ge\frac{39}{8}\forall x\ge0\)
Dấu = xảy ra
\(\Leftrightarrow\left(\sqrt{2x}-\frac{\sqrt{2}}{4}\right)^2=0\)
\(\sqrt{2}\cdot\sqrt{x}-\frac{\sqrt{2}}{4}=0\)
\(\sqrt{2}\cdot\sqrt{x}=\frac{\sqrt{2}}{4}\)
\(\sqrt{x}=\frac{\sqrt{2}}{4}:\sqrt{2}\)
\(\sqrt{x}=\frac{1}{4}\)
\(x=\left(\frac{1}{4}\right)^2=\frac{1}{16}\)
E max = \(\frac{1}{\frac{39}{8}}=\frac{8}{39}\Leftrightarrow x=\frac{1}{16}\)
\(E=\frac{1}{2x-\sqrt{x}+5}\)
\(=\frac{1}{2\left(x-\frac{\sqrt{x}}{2}+\frac{5}{2}\right)}\)
\(=\frac{1}{2\left(x-2.\sqrt{x}.\frac{1}{4}+\frac{1}{16}-\frac{1}{16}+\frac{5}{2}\right)}\)
\(=\frac{1}{2\left(x-\frac{\sqrt{x}}{4}\right)^2+\frac{39}{8}}\le\frac{8}{39}\)
Dấu "="xảy ra \(\Leftrightarrow x-\frac{\sqrt{x}}{4}=0\Leftrightarrow x=\frac{\sqrt{x}}{4}\)
\(\Leftrightarrow16x^2=x\Leftrightarrow x\left(16x-x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{16}\end{cases}}\)
Vậy \(E_{max}=\frac{8}{39}\)\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{16}\end{cases}}\)