Cho
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ƯCLN của hai số tự nhiên không nguyên tố cùng nhau : 4n +3; b=5n+1(n là số tự nhiên) .Tìm ƯCLN (a,b)
Gọi ƯCLN(4n+3; 5n+1) là d. Ta có:
4n+3 chia hết cho d => 20n+15 chia hết cho d
5n+1 chia hết cho d => 20n+4 chia hết cho d
=> 20n+15-(20n+4) chia hết cho d
=> 11 chia hết cho d
=> d thuộc Ư(11)
=> d thuộc {1; -1; 11; -11}
Mà 4n+3 và 5n+1 không nguyên tố cùng nhau
=> d = 11
=> ƯCLN(4n+3; 5n+1) = d
Chúc bạn học tốt
Gọi ƯCLN(7n+3; 8n -1) = d ( d thuộc N*)
=> 7n+3 chia hết cho d
=> 8n-1 chia hết cho d
=>8(7n+3) chia hết cho d
=>7(8n-1) chia hết cho d
=>56n+24 chia hết cho d
=>56n-7 chia hết cho d
=> (56n+24) - (56n - 7) chia hết cho d
=> 31 chia hết cho d
Mà d thuộc N*
=> d thuộc { 1; 31}
Giả sử d =31
=> 7n + 3 chia hết cho 31
=> 7n+3 - 31 chia hết cho 31 ( do 31 chia hết cho 31)
=> 7n -28 chi hết cho 31
=>7(n-4) chia hết cho 31
Mà (7,31) =1
=> n-4 chia hết cho 31
=>n chia 31 dư4
=> n thuộc { 4 ; 35 ; 66 ; 97 ; ........}
Vậy để thỏa mãn thì điều kiện của n : n từ 40 đến 90 và khác 66
Cho a và b là hai số không nguyên tố cùng nhau : a=5n+3 ; b=6n +1(n thuộc số tự nhiên) tìm ƯCLN(a,b)
Đặt ƯCLN ( a,b ) = d ( d thuộc N )
Thay a = 5n + 3 , b = 6n + 1
=> \(\hept{\begin{cases}5n+3⋮d\\6n+1⋮d\end{cases}}\)=> \(\hept{\begin{cases}6.\left(5n+3\right)⋮d\\5.\left(6n+1\right)⋮d\end{cases}}\)=> \(\hept{\begin{cases}30n+18⋮d\\30n+5⋮d\end{cases}}\)=> ( 30n + 18 ) - ( 30n + 5 ) \(⋮d\)
=> 13 \(⋮\)d => d thuộc Ư ( 13 ) = { 1 ; 13 } mà d lớn nhất => d = 13
ƯCLN ( 5n + 3 ; 6n + 1 ) = 13 hay ƯCLN ( a , b ) = 13
Vậy ƯCLN ( a , b ) = 13
Đặt a=12.a
b=12.b
UCLN(a,b)=1
Ta có : a.b=2016
12.a.12.b=2016
(12.12).a.b=2016
144.a.b=2016
a.b=2016:144
a.b=14
Vì a.b=14 và UCLN(a,b)=1 nên
(a=1;b=14);(a=14;b=1);(a=2;b=7);(a=7;b=2)
suy ra (a=12;b=168);(a=168;b=12);(a=24;b=84);(a=84;b=24)
Cho a và b là hai số không nguyên tố cùng nhau : a=4n+3 ; b=5n +1(n thuộc số tự nhiên) tìm ƯCLN(a,b)
Gọi ƯCLN(4n+3; 5n+1) là d. Ta có:
4n+3 chia hết cho d => 20n+15 chia hết cho d
5n+1 chia hết cho d => 20n+4 chia hết cho d
=> 20n+15-(20n+4) chia hết cho d
=> 11 chia hết cho d
=> d thuộc Ư(11)
=> d thuộc {1; -1; 11; -11}
Mà 4n+3 và 5n+1 không nguyên tố cùng nhau
=> d = 11
=> ƯCLN(4n+3; 5n+1) = d
Câu 1: Cho a và b là hai số tự nhiên nguyên tố cùng nhau . Tìm Ưcln của a.b và a+b
giúp mk vs!!!!!!!!
Giả sử a + b và ab ko nguyên tố cùng nhau
Do đó a + b và ab ắt phải có ít nhất một ước số chung là d
\(\Rightarrow\hept{\begin{cases}a+b⋮d\left(1\right)\\ab⋮d\left(2\right)\end{cases}}\)
Vì d là số nguyên tố nên từ (2) ta có : \(a⋮d\) và \(b⋮d\)
Nếu \(a⋮d\) từ \(\left(1\right)\Rightarrow b⋮d\)
Như vậy a;b có một ước nguyên tố d; trái giả thiết
Nếu \(b⋮d\)
Tương tự như trên
Do đó a + b và ab nguyên tố cùng nhau nếu a và b nguyên tố cùng nhau
\(\RightarrowƯCLN\left(a+b;ab\right)=1\)
b2;
Goị hai số cần tìm là : a , b ( a> b )
Ta có :ƯCLN(a,b)=18
=>a=18m , b=18n mà ƯCLN(m,n)=1
=>a+b=18m+18n=18(m+m)=162
=> m+ n = 162:18=9
Ta có bảng sau :
m | 1 | 8 | 2 | 7 | 4 | 5 |
n | 8 | 1 | 7 | 2 | 5 | 4 |
a | 18 | 144 | 36 | 126 | 72 | 90 |
b | 144 | 18 | 126 | 36 | 90 | 72 |
b3:
Gọi hai số cần tìm là : a , b ( a >b )
Ta có : ƯCLN(a,b)=15
=> a = 15m , b = 15n mà ƯCLN(m,n)=1
=>a+b=15m-15n=15(m-n)=90
=>m+n=90:15=6
Vì : b < a < 200 nên n < m < 13
Bạn lập bảng tương tự như trên nhé nhớ ƯCLN(m,n)=1
xin lỗi tớ có việt gấp