tìm m để phương trình sau có nghiệm
\(msin^2x+cos2x+sin^2x+m=0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\dfrac{m}{2}\left(1-cos4x\right)-\dfrac{3}{2}sin4x+\dfrac{1+cos4x}{2}=2\)
\(\Leftrightarrow\left(1-m\right)cos4x-3sin4x=3-m\)
Theo điều kiện có nghiệm của pt lượng giác bậc nhất, pt đã cho có nghiệm khi:
\(\left(1-m\right)^2+\left(-3\right)^2\ge\left(3-m\right)^2\)
\(\Leftrightarrow4m+1\ge0\Leftrightarrow m\ge-\dfrac{1}{4}\)
Đáp án C
Sử dụng tính đơn điệu của hàm số, đánh giá số nghiệm của phương trình.
Vậy, có 3 giá trị nguyên của m thỏa mãn yêu cầu đề bài.
C) Pt \(\Rightarrow m\cdot\dfrac{1-cos2x}{2}-\left(m-1\right)sin2x+\left(2m+1\right)\cdot\dfrac{1+cos2x}{2}=0\)
\(\Rightarrow\left(m+1\right)cos2x-\left(2m-2\right)sin2x=-1-3m\)
Pt có nghiệm: \(\Leftrightarrow\) \(\left(m+1\right)^2+\left[-\left(2m-2\right)\right]^2\ge\left(1+3m\right)^2\)
\(\Rightarrow\dfrac{-3-\sqrt{13}}{2}\le m\le\dfrac{-3+\sqrt{13}}{2}\)
Pt vô nghiệm: \(\Rightarrow\left\{{}\begin{matrix}m>\dfrac{-3+\sqrt{13}}{2}\\m< \dfrac{-3-\sqrt{13}}{2}\end{matrix}\right.\)
Đáp án B
PT
Đặt
Để (1) có nghiệm thì (2) có nghiệm có nghiệm
Suy ra có nghiệm
Xét hàm số
Lập bảng biến thiên hàm số
1.
a, Phương trình có nghiệm khi:
\(\left(m+2\right)^2+m^2\ge4\)
\(\Leftrightarrow m^2+4m+4+m^2\ge4\)
\(\Leftrightarrow2m^2+4m\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}m\ge0\\m\le-2\end{matrix}\right.\)
b, Phương trình có nghiệm khi:
\(m^2+\left(m-1\right)^2\ge\left(2m+1\right)^2\)
\(\Leftrightarrow2m^2+6m\le0\)
\(\Leftrightarrow-3\le m\le0\)
2.
a, Phương trình vô nghiệm khi:
\(\left(2m-1\right)^2+\left(m-1\right)^2< \left(m-3\right)^2\)
\(\Leftrightarrow4m^2-4m+1+m^2-2m+1< m^2-6m+9\)
\(\Leftrightarrow4m^2-7< 0\)
\(\Leftrightarrow-\dfrac{\sqrt{7}}{2}< m< \dfrac{\sqrt{7}}{2}\)
b, \(2sinx+cosx=m\left(sinx-2cosx+3\right)\)
\(\Leftrightarrow\left(m-2\right)sinx-\left(2m+1\right)cosx=-3m\)
Phương trình vô nghiệm khi:
\(\left(m-2\right)^2+\left(2m+1\right)^2< 9m^2\)
\(\Leftrightarrow m^2-4m+4+4m^2+4m+1< 9m^2\)
\(\Leftrightarrow m^2-1>0\)
\(\Leftrightarrow\left[{}\begin{matrix}m>1\\m< -1\end{matrix}\right.\)
\(\Leftrightarrow m.sin2x+cos2x+\frac{1-cos2x}{2}+m=0\)
\(\Leftrightarrow2m.sin2x+cos2x=-2m-1\)
Theo điều kiện có nghiệm của pt lượng giác bậc nhất:
\(4m^2+1\ge\left(-2m-1\right)^2\)
\(\Leftrightarrow m\le0\)
\(\Leftrightarrow\left(cosx+1\right)\left(4cos2x-m.cosx\right)=m\left(1-cosx\right)\left(1+cosx\right)\)
\(\Leftrightarrow4cos2x-m.cosx=m\left(1-cosx\right)\)
\(\Leftrightarrow4cos2x=m\)
\(\Rightarrow cos2x=\dfrac{m}{4}\)
Pt có đúng 2 nghiệm thuộc đoạn đã cho khi và chỉ khi:
\(-1< \dfrac{m}{4}\le-\dfrac{1}{2}\Leftrightarrow-4< m\le-2\)
Có 2 giá trị nguyên của m thỏa mãn
\(\Leftrightarrow m.sin^2x+1-2sin^2x+sin^2x+m=0\)
\(\Leftrightarrow\left(m-1\right)sin^2x=-m-1\)
- Với \(m=1\) pt vô nghiệm
- Với \(m\ne1\Rightarrow sin^2x=\frac{-m-1}{m-1}\)
Do \(0\le sin^2x\le1\) nên pt có nghiệm khi và chỉ khi:
\(0\le\frac{-m-1}{m-1}\le1\) \(\Leftrightarrow-1\le m\le0\)