Cho A = (x - 2)(x2 + 4x - 2) - x2(x + 1)
Với giá trị nào của A thì x > -21
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(A=x^3-27-x^3+3x^2-3x+1-4\left(x^2-4\right)-x\)
\(=3x^2-4x-26-4x^2+16\)
\(=-x^2-4x-10\)
a) Δ' = 2 2 - (m - 2) = 6 - m
Phương trình đã cho có nghiệm khi và chỉ khi Δ' ≥ 0
⇔ 6 - m ≥ 0 ⇔ m ≤ 6
Vậy với m ≤ 6 thì phương trình đã cho có nghiệm
a, thay m=2 vào phương trình (1) ta được:
x^2-6.x+3=0
có: \(\Delta\)1=(-6)^2-4.3=24>0
vậy phương trình có 2 nghiệm phân biệt :
x3=(6+\(\sqrt{ }\)24)/2=3+\(\sqrt{ }\)6
x4=(6-\(\sqrt{ }\)24)/2=3-\(\sqrt{ }\)6
b, từ phương trình (1) ta có :
\(\Delta\)=[-2(m+1)]^2-4.(m^2-1)=(2m+2)^2-4m^2+4=4m^2+8m+4-4m^2+4
=8m+8
để pt(1) có 2 nghiệm x1,x2 khi \(\Delta\)\(\ge\)0<=>8m+8\(\ge\)0
<=>m\(\ge\)-1
m\(\ge\)-1 thì pt(1) có 2 nghiệm x1,x2
theo vi ét=>x1+x2=2m+2
lại có x1+x2=1<=>2m+2=1<=>m=-1/2(thỏa mãn)
vậy m=-1/2 thì pt(1) có 2 nghiệm x1+x2 thỏa mãn x1+x2=1
\(x^2-2\left(m+1\right)x+m^2-1=0\)(1)
a,Thay m=2 vào pt (1) có
\(x^2-2\left(2+1\right)x+2^2-1=0\)
⇔\(x^2-6x+3=0\)
⇔\(\left[{}\begin{matrix}x=3+\sqrt{6}\\x=3-\sqrt{6}\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=3+\sqrt{6}\\x=3-\sqrt{6}\end{matrix}\right.\) khi m=2
a) \(x^3-x^2+3x-3>0\)
\(\Leftrightarrow x^2\left(x-1\right)+3\left(x-1\right)>0\)
\(\Leftrightarrow\left(x^2+3\right)\left(x-1\right)>0\)
Mà: \(x^2+3>0\forall x\)
\(\Leftrightarrow x-1>0\)
\(\Leftrightarrow x>1\)
b) \(x^3+x^2+9x+9< 0\)
\(\Leftrightarrow x^2\left(x+1\right)+9\left(x+1\right)< 0\)
\(\Leftrightarrow\left(x^2+9\right)\left(x+1\right)< 0\)
Mà: \(x^2+9>0\forall x\)
\(\Leftrightarrow x+1< 0\)
\(\Leftrightarrow x< -1\)
d) \(4x^3-14x^2+6x-21< 0\)
\(\Leftrightarrow2x^2\left(2x-7\right)+3\left(2x-7\right)< 0\)
\(\Leftrightarrow\left(2x^2+3\right)\left(2x-7\right)< 0\)
Mà: \(2x^2+3>0\forall x\)
\(\Leftrightarrow2x-7< 0\)
\(\Leftrightarrow2x< 7\)
\(\Leftrightarrow x< \dfrac{7}{2}\)
d) \(x^2\left(2x^2+3\right)+2x^2>-3\)
\(\Leftrightarrow2x^4+3x^2+2x^2+3>0\)
\(\Leftrightarrow2x^4+5x^2+3>0\)
\(\Leftrightarrow\left(x^2+1\right)\left(2x^2+3\right)>0\)
Mà:
\(x^2+1>0\forall x\)
\(2x^2+3>0\forall x\)
\(\Rightarrow x\in R\)
a: =>x^2(x-1)+3(x-1)>0
=>(x-1)(x^2+3)>0
=>x-1>0
=>x>1
b: =>x^2(x+1)+9(x+1)<0
=>(x+1)(x^2+9)<0
=>x+1<0
=>x<-1
c: 4x^3-14x^2+6x-21<0
=>2x^2(2x-7)+3(2x-7)<0
=>2x-7<0
=>x<7/2
d: =>x^2(2x^2+3)+2x^2+3>0
=>(2x^2+3)(x^2+1)>0(luôn đúng)
\(A=\left(x-2\right)\left(x^2+4x-2\right)-x^2\left(x+1\right)\)
\(=x^3+4x^2-2x-2x^2-8x+4-x^3-x^2=x^2-10x+4\)
Với giá trị \(x^2-10x+4\)thì x > -21
A = ( x - 2 )( x2 + 4x - 2 ) - x2( x + 1 )
= x( x2 + 4x - 2 ) - 2( x2 + 4x - 2 ) - x3 - x2
= x3 + 4x2 - 2x - 2x2 - 8x + 4 - x3 - x2
= ( x3 - x3 ) + ( 4x2 - 2x2 - x2 ) + ( -2x - 8x ) + 4
= x2 - 10x + 4
A > -21
<=> x2 - 10x + 4 > -21
<=> x2 - 10x + 4 + 21 > 0
<=> x2 - 10x + 25 > 0
<=> ( x - 5 )2 > 0
<=> \(\orbr{\begin{cases}x-5>0\\x-5< 0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x>5\\x< 5\end{cases}}\)
Vậy với x > 5 hoặc x < 5 thì A > -21
<=>