tìm x ạ
x-√x-6=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu đề yêu cầu phân tích thành nhân tử thì biểu thức này không phân tích được em nhé
\(1,\)
\(2x\left(x-3\right)-\left(3-x\right)=0\)
\(\Leftrightarrow2x\left(x-3\right)+\left(x-3\right)=0\)
\(\Leftrightarrow\left(2x+1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x+1=0\\x-3=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{-1}{2}\\x=3\end{cases}}\)
\(2,\)
\(3x\left(x+5\right)-6\left(x+5\right)=0\)
\(\Leftrightarrow\left(3x-6\right)\left(x+5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x-6=0\\x+5=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=-5\end{cases}}\)
\(3,\)
\(x^4-x^2=0\)
\(\Leftrightarrow x^2\left(x^2-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2=0\\x^2-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm1\end{cases}}\)
\(4,\)
\(x^2-2x=0\)
\(\Leftrightarrow x\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-2=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
\(5,\)
\(x\left(x+6\right)-10\left(x-6\right)=0\)
\(\Leftrightarrow x^2+6x-10x+60=0\)
\(\Leftrightarrow x^2-4x+60=0\)
\(\Leftrightarrow x^2-4x+4+56=0\)
\(\Leftrightarrow\left(x-2\right)^2=-56\)(Vô lý)
=> Phương trình vô nghiệm
\(\left(a\right):2x-7\sqrt{x}+3=0\left(x\ge0\right)\\ < =>\left(2x-6\sqrt{x}\right)-\left(\sqrt{x}-3\right)=0\\ < =>2\sqrt{x}\left(\sqrt{x}-3\right)-\left(\sqrt{x}-3\right)=0\\ < =>\left(2\sqrt{x}-1\right)\left(\sqrt{x}-3\right)=0\\ =>\left[{}\begin{matrix}2\sqrt{x}-1=0\\\sqrt{x}-3=0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=\dfrac{1}{4}\left(TM\right)\\x=9\left(TM\right)\end{matrix}\right.\)
\(\left(b\right):3\sqrt{x}+5< 6\\ < =>3\sqrt{x}< 1\\ < =>\sqrt{x}< \dfrac{1}{3}\\ < =>0\le x< \dfrac{1}{9}\)
\(\left(c\right):x-3\sqrt{x}-10< 0\\ < =>\left(x-5\sqrt{x}\right)+\left(2\sqrt{x}-10\right)< 0\\ < =>\sqrt{x}\left(\sqrt{x}-5\right)+2\left(\sqrt{x}-5\right)< 0\\ < =>\left(\sqrt{x}-5\right)\left(\sqrt{x}+2\right)< 0\\ =>\left\{{}\begin{matrix}\sqrt{x}-5< 0\\\sqrt{x}+2>0\end{matrix}\right.\\ < =>\left\{{}\begin{matrix}0\le x< 25\\x\ge0\end{matrix}\right.< =>0\le x< 25\)
\(\left(d\right):x-5\sqrt{x}+6=0\left(x\ge0\right)\\ < =>\left(x-2\sqrt{x}\right)-\left(3\sqrt{x}-6\right)=0\\ < =>\sqrt{x}\left(\sqrt{x}-2\right)-3\left(\sqrt{x}-2\right)=0\\ < =>\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)=0\\ =>\left[{}\begin{matrix}\sqrt{x}-3=0\\\sqrt{x}-2=0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=9\\x=4\end{matrix}\right.\left(TM\right)\)
\(\left(e\right):x+5\sqrt{x}-14< 0\\ < =>\left(x+7\sqrt{x}\right)-\left(2\sqrt{x}+14\right)< 0\\ < =>\sqrt{x}\left(\sqrt{x}+7\right)-2\left(\sqrt{x}+7\right)< 0\\ < =>\left(\sqrt{x}-2\right)\left(\sqrt{x}+7\right)< 0\\ =>\left\{{}\begin{matrix}\sqrt{x}+7>0\\\sqrt{x}-2< 0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x\ge0\\0\le x< 4\end{matrix}\right.< =>0\le x< 4\)
a) x(x - 1) = 0
=> \(\left[\begin{array}{nghiempt}x=0\\x-1=0\end{array}\right.\)=> \(\left[\begin{array}{nghiempt}x=0\\x=1\end{array}\right.\)
b) 3x2 - 6x = 0
=> 3x.(x - 2) = 0
=> x.(x - 2) = 0
=> \(\left[\begin{array}{nghiempt}x=0\\x-2=0\end{array}\right.\)=> \(\left[\begin{array}{nghiempt}x=0\\x=2\end{array}\right.\)
c) x(x - 6) + 10(x - 6) = 0
=> (x - 6)(x + 10) = 0
=> \(\left[\begin{array}{nghiempt}x-6=0\\x+10=0\end{array}\right.\)=> \(\left[\begin{array}{nghiempt}x=6\\x=-10\end{array}\right.\)
d) x3 - x = 0
=> x.(x2 - 1) = 0
=> x.(x - 1).(x + 1) = 0
=> \(\left[\begin{array}{nghiempt}x=0\\x-1=0\\x+1=0\end{array}\right.\)=> \(\left[\begin{array}{nghiempt}x=0\\x=1\\x=-1\end{array}\right.\)
a)
\(x\left(x-1\right)=0\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=0\\x-1=0\end{array}\right.\)\(\Rightarrow\left[\begin{array}{nghiempt}x=0\\x=1\end{array}\right.\)
Vậy x=0 ; x =1
b)
\(3x^2-6x=0\)
\(\Rightarrow3x\left(x-2\right)=0\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=0\\x-2=0\end{array}\right.\)\(\Rightarrow\left[\begin{array}{nghiempt}x=0\\x=2\end{array}\right.\)
Vậy x=0 ; x =2
c)
\(x\left(x-6\right)+10\left(x-6\right)=0\)
\(\Rightarrow\left(x-6\right)\left(x+10\right)=0\)
\(\Rightarrow\left[\begin{array}{nghiempt}x-6=0\\x+10=0\end{array}\right.\)\(\Rightarrow\left[\begin{array}{nghiempt}x=6\\x=-10\end{array}\right.\)
Vậy x=6 ; x = -10
d)
\(x^3-x=0\)
\(\Rightarrow x\left(x^2-1\right)=0\)
\(\Rightarrow x\left(x-1\right)\left(x+1\right)=0\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=0\\x-1=0\\x+1=0\end{array}\right.\)\(\Rightarrow\left[\begin{array}{nghiempt}x=0\\x=1\\x=-1\end{array}\right.\)
Vậy x = 0 ; x = 1 ; x= - 1
Answer:
\(3x^2-4x=0\)
\(\Rightarrow x\left(3x-4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{4}{3}\end{cases}}\)
\(\left(x^2-5x\right)+x-5=0\)
\(\Rightarrow x\left(x-5\right)+\left(x-5\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-5=0\\x+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=5\\x=-1\end{cases}}\)
\(x^2-5x+6=0\)
\(\Rightarrow x^2-2x-3x+6=0\)
\(\Rightarrow\left(x^2-2x\right)-\left(3x-6\right)=0\)
\(\Rightarrow x\left(x-2\right)-3\left(x-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-2=0\\x-3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=2\\x=3\end{cases}}\)
\(5x\left(x-3\right)-x+3=0\)
\(\Rightarrow5x\left(x-3\right)-\left(x-3\right)=0\)
\(\Rightarrow\left(5x-1\right)\left(x-3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}5x-1=0\\x-3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{1}{5}\\x=3\end{cases}}\)
\(x^2-2x+5=0\)
\(\Rightarrow\left(x^2-2x+1\right)+4=0\)
\(\Rightarrow\left(x-1\right)^2=-4\) (Vô lý)
Vậy không có giá trị \(x\) thoả mãn
\(x^2+x-6=0\)
\(\Rightarrow x^2+3x-2x-6=0\)
\(\Rightarrow x.\left(x+3\right)-2\left(x+3\right)=0\)
\(\Rightarrow\left(x-2\right)\left(x+3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-2=0\\x+3=0\end{cases}\Rightarrow\orbr{\begin{cases}x=2\\x=-3\end{cases}}}\)
a,(x+6)^4-(x+6)^6=0
<=>(x+6)^4-(x+6)^4.(x+6)^2=0
<=>(x+6)^4.[1-(x+6)^2]=0
TH1:(x+6)^4=0=>x+6=0=>x=-6
TH2:1-(x+6)^2=0=>(x+6)^2=1=>x+6=1 hoặc x+6=-1
=>x=-5 hoặc x=-7
Vậy x E {-7;-6;-5}
Tick nhé
ĐKXĐ:\(x\ge6\)
\(x-\sqrt{x-6}=0\\ \Leftrightarrow\sqrt{x-6}=x\\ \Leftrightarrow x-6=x^2\\ \Leftrightarrow x^2-x+6=0\\ \Leftrightarrow\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{23}{4}=0\\ \Leftrightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{23}{4}=0\left(vôlí\right)\)
Vậy pt trên vô no