thực hiện phép tính
(\(\frac{1}{2}\)x - 1) (2x - 3)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\frac{1}{x+1}-\frac{3}{x^3+1}+\frac{3}{x^2-x+1}\right)\times\frac{3x^2-3x+3}{\left(x+1\right)\left(x+2\right)}-\frac{2x-2}{x^2+2x}\)
\(=\left[\frac{x^2-x+1}{\left(x+1\right)\left(x^2-x+1\right)}-\frac{3}{\left(x+1\right)\left(x^2-x+1\right)}+\frac{3\left(x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\right]\times\frac{3\left(x^2-x+1\right)}{\left(x+1\right)\left(x+2\right)}-\frac{2\left(x-1\right)}{x\left(x+2\right)}\)
\(=\frac{\left(x^2-x+1\right)-3+3\left(x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\times\frac{3\left(x^2-x+1\right)}{\left(x+1\right)\left(x+2\right)}-\frac{2\left(x-1\right)}{x\left(x+2\right)}\)
\(=\frac{x^2-x+1-3+3x+3}{x+1}\times\frac{3}{\left(x+1\right)\left(x+2\right)}-\frac{2\left(x-1\right)}{x\left(x+2\right)}\)
\(=\frac{x^2+2x+1}{x+1}\times\frac{3}{\left(x+1\right)\left(x+2\right)}-\frac{2\left(x-1\right)}{x\left(x+2\right)}\)
\(=\frac{3\left(x+1\right)^2}{\left(x+1\right)\left(x+1\right)\left(x+2\right)}-\frac{2\left(x-1\right)}{x\left(x+2\right)}\)
\(=\frac{3x}{x\left(x+2\right)}-\frac{2x-2}{x\left(x+2\right)}\)
\(=\frac{3x-2x+2}{x\left(x+2\right)}\)
\(=\frac{x+2}{x\left(x+2\right)}\)
\(=\frac{1}{x}\)
a) \(\frac{3x+5}{2\left(x-1\right)}+\frac{4}{x-2}=\frac{\left(3x+5\right)\left(x-2\right)+4\cdot2\left(x-1\right)}{2\left(x-1\right)\left(x-2\right)}=\frac{3x^2-6x+5x-10+8x-8}{2\left(x-1\right)\left(x-2\right)}\)
\(=\frac{3x^2+7x-18}{2\left(x-1\right)\left(x-2\right)}\)
b) \(\frac{2x^2+1}{4x^2-2x}+\frac{3-3x}{1-2x}+\frac{3}{2x}=\frac{2x^2+1+4x\left(3-3x\right)+2\cdot3\left(1-2x\right)}{4x\left(1-2x\right)}=\frac{2x^2+1+12-12x+6-12x}{4x\left(1-2x\right)}\)\(=\frac{2x^2-24x+19}{4x\left(1-2x\right)}\)
Đề này... bạn xem lại đi. Chứ thế này thì dùng máy tính cũng không làm nổi T-T
\(ĐKXĐ:x\ne3;x\ne-1\)
Nếu x=0 là nghiệm của phương trình
Nếu x khác 0 ta có:
\(\frac{1}{2\left(x-3\right)}+\frac{1}{2\left(x-1\right)}=\frac{2}{\left(x-1\right)\left(x-3\right)}\)
\(\Leftrightarrow\frac{x-1+x-3}{\left(x-1\right)\left(x-3\right)}=\frac{4}{\left(x-1\right)\left(x-3\right)}\)
\(\Leftrightarrow\frac{2x-4}{\left(x-1\right)\left(x-3\right)}=\frac{4}{\left(x-1\right)\left(x-3\right)}\)
\(\Leftrightarrow2x-4=4\)
\(\Leftrightarrow x=4\)
\(\frac{x}{2\left(x-3\right)}+\frac{x}{2\left(x+1\right)}=\frac{2x}{\left(x+1\right)\left(x-3\right)}\left(x\ne-1;x\ne3\right)\)
<=> \(\frac{x}{2\left(x-3\right)}+\frac{x}{2\left(x+1\right)}-\frac{2x}{\left(x+1\right)\left(x-3\right)}=0\)
<=> \(\frac{x\left(x+1\right)}{2\left(x-3\right)\left(x+1\right)}+\frac{x\left(x-3\right)}{2\left(x+1\right)\left(x-3\right)}-\frac{2x\cdot2}{2\left(x+1\right)\left(x-3\right)}=0\)
<=> \(\frac{x^2+x+x^2-3x-4x}{2\left(x-3\right)\left(x+1\right)}=0\)
=> 2x2-6x=0
<=> 2x(x-3)=0
<=> \(\orbr{\begin{cases}2x=0\\x-3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=3\end{cases}}\)
ĐCĐK x khác -1 và x khác 3 => x=0
Vậy x=0 là nghiệm của phương trình
a. \(=\frac{x+1}{2.\left(x+3\right)}+\frac{2x+3}{x.\left(x+3\right)}=\frac{x^2+x+4x+6}{2x.\left(x+3\right)}=\frac{x^2+5x+6}{2x.\left(x+3\right)}=\frac{\left(x+2\right).\left(x+3\right)}{2x.\left(x+3\right)}=\frac{x+2}{2x}\)
b. =\(\frac{2.\left(x+3\right)}{x.\left(3x-1\right)}.\frac{-\left(3x-1\right)}{x.\left(x+3\right)}=\frac{-2}{x^2}\)
Chắc chắn đúng, mik nhaaaaaa
ĐKXĐ: \(x\ne0;x\ne\frac{1}{2}\)
\(\frac{2x^2+1}{4x^2-2x}+\frac{3}{2x}-\frac{3-3x}{2x-1}\)
\(=\frac{2x^2+1}{4x^2-2x}+\frac{3}{2x}-\frac{6x-6x^2}{4x^2-2x}\)
\(=\frac{8x^2-6x+1}{4x^2-2x}+\frac{3}{2x}=\frac{8\left(x-\frac{1}{2}\right)\left(x-\frac{1}{4}\right)}{4x\left(x-\frac{1}{2}\right)}+\frac{3}{2x}\)
\(=\frac{8x-2}{4x}+\frac{3}{2x}=\frac{8x-2}{4x}+\frac{6}{4x}=\frac{8x-2+6}{4x}\)
\(=\frac{8x+4}{4x}=1+\frac{4x+4}{4x}=2+\frac{4}{4x}=2+\frac{1}{x}\)
= (x+1).(x+3)-(1-x).(x-3)+2x.(1-x)/(x-3).(x+3)
= x^2+4x+3+x^2-4x+3+2x-2x^2/(x+3).(x-3)
= 2x+6/(x+3).(x-3) = 2.(x+3)/(x+3).(x-3) = 2/x-3
k mk nha
\(\frac{x+1}{x-3}\)\(-\)\(\frac{1-x}{x+3}\)\(-\)\(\frac{2x\left(1-x\right)}{9-x^2}\)
\(=\)\(\frac{\left(x+1\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}\)\(-\)\(\frac{\left(1-x\right)\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}\)\(-\)\(\frac{2x\left(1-x\right)}{9-x^2}\)
\(=\)\(\frac{x^2+4x+3}{x^2-9}\)\(-\)\(\frac{4x-x^2-3}{x^2-9}\)\(+\)\(\frac{2x-2x^2}{x^2-9}\)
\(=\)\(\frac{x^2+4x+3-4x+x^2+3+2x-2x^2}{x^2-9}\)\(=\)\(\frac{6+2x}{\left(x-3\right)\left(x+3\right)}\)\(=\)\(\frac{2\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}\)
\(=\)\(\frac{2}{x-3}\)
\(\frac{3}{2x}+\frac{3x-3}{2x-1}+\frac{2x^2+1}{4x^2-2x}\)
= \(\frac{3\left(2x-1\right)+2x\left(3x-3\right)+2x^2+1}{4x^2-2x}\)
= \(\frac{6x-3+6x^2-6x+2x^2+1}{4x^2-2x}\)
= \(\frac{8x^2-2}{4x^2-2x}\)
= \(\frac{2}{2x}\)
\(\frac{5x}{2x+1}+\frac{x+3}{2x+1}\)
\(=\frac{5x+x+3}{2x+1}\)
\(=\frac{6x+3}{2x+1}=\frac{3\left(2x+1\right)}{2x+1}\)
\(=3\)
\(\frac{5x}{2x+1}+\frac{x+3}{2x+1}\)
\(=\frac{5x+x+3}{2x+1}\)
\(=\frac{6x+3}{2x+1}\)
\(=\frac{3\left(2x+1\right)}{2x+1}\)
\(=3\)
( 1/2x - 1 )( 2x - 3 )
= 1/2x( 2x - 3 ) - 1( 2x - 3 )
= x2 - 3/2x - 2x + 3
= x2 - 7/2x + 3