K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: \(2x^2-4xy+4y^2+2x+5\)

\(=\left(x^2-4xy+4y^2\right)+\left(x^2+2x+1\right)+4\)

\(=\left(x-2y\right)^2+\left(x+1\right)^2+4\)

Ta có: \(\left(x-2y\right)^2\ge0\forall x,y\)

\(\left(x+1\right)^2\ge0\forall x\)

Do đó: \(\left(x-2y\right)^2+\left(x+1\right)^2\ge0\forall x,y\)

\(\Leftrightarrow\left(x-2y\right)^2+\left(x+1\right)^2+4\ge4\forall x,y\)

Dấu '=' xảy ra khi

\(\left\{{}\begin{matrix}x-2y=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-1-2y=0\\x=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-2y=1\\x=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-\frac{1}{2}\\x=-1\end{matrix}\right.\)

Vậy: Giá trị nhỏ nhất của biểu thức \(2x^2-4xy+4y^2+2x+5\) là 4 khi x=-1 và \(y=-\frac{1}{2}\)

NV
20 tháng 8 2021

\(A=\left(x^2+4y^2+1-4xy+2x-4y\right)+\left(x^2-4x+4\right)-3\)

\(A=\left(x-2y+1\right)^2+\left(x-2\right)^2-3\ge-3\)

Dấu "=" xảy ra khi \(\left(x;y\right)=\left(2;\dfrac{3}{2}\right)\)

24 tháng 10 2020

a) Đặt A = u2 + v2 - 2u + 3v + 15

= (u2 - 2u + 1) + (v2 + 3v + 9/4) + 47/4

= (u - 1)2 + (v + 3/2)2 + 47/4 \(\ge\frac{47}{4}\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}u-1=0\\v+\frac{3}{2}=0\end{cases}}\Rightarrow\hept{\begin{cases}u=1\\v=-\frac{3}{2}\end{cases}}\)

Vậy Min A = 47/4 <=> u = 1 ; y = -3/2

16 tháng 9 2018

\(C=2x^2+4y^2+4xy-3x-1\)

\(=\left(x^2+4xy+4y^2\right)+\left(x^2-3x+\dfrac{9}{4}\right)-\dfrac{13}{4}\)

\(=\left(x+2y\right)^2+\left(x-\dfrac{3}{2}\right)^2-\dfrac{13}{4}\)

Ta có : \(\left\{{}\begin{matrix}\left(x+2y\right)^2\ge0\\\left(x-\dfrac{3}{2}\right)^2\ge0\end{matrix}\right.\) \(\Leftrightarrow P\ge-\dfrac{13}{4}\)

Dấu "=" xảy ra khi :

\(\left\{{}\begin{matrix}\left(x+2y\right)^2=0\\\left(x-\dfrac{3}{2}\right)^2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{3}{2}\\y=-\dfrac{3}{4}\end{matrix}\right.\)

Vậy \(C_{Min}=-\dfrac{13}{4}\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{3}{2}\\y=-\dfrac{3}{4}\end{matrix}\right.\)

16 tháng 9 2018

C= 2x2 +4y2+4xy -3x -1

Mk viết nhầm đề các bạn thông cảm nhé

28 tháng 10 2016

Ta có

A=2x2+4y2-4x+4xy+2020

=(x^2+4y^2+4xy)+(x^2-4x+4)+2016

=(x+2y)^2+(x-2)^2+2016

Thấy

(x+2y)^2>=0 với mọi x,y

(x-2)^2>=0 với mọi x

=>(x+2y)^2+(x-2)^2+2016>=2016 với mọi x,y

Hay Min A>=2016

Dấu "=" xảy ra<=>(x+2y)^2=0 và(x-2)^2=0

<=>x=2;y=-1

Vậy Min A=2016 tại x=2 và y=-1

16 tháng 12 2019

\(N = 5x^2 + 2y^ 2 + 4xy - 2x + 4y + 2015\)

\(N = ( 4x^ 2 + 4xy + y ^ 2 ) + ( x^2 - 2x + 1 )+\)

\(( y^2 + 4y + 4 ) + 2010\)

\(N = ( 2x + y )^2 + ( x - 1 )^2 + ( y + 2 )^2 + 2010\)

\(\ge\)\(2010\)

\(Dấu " = " xảy ra \)\(\Leftrightarrow\) \(2x + y = 0 và\)\(x - 1 = 0 và y + 2 = 0\)

\(\Rightarrow\)\(x = 1 và y = - 2\)

\(Min N = 2010\)\(\Leftrightarrow\)\(x = 1 và y = - 2\)