3/5.8 1/2-3/3.7 1/3
giup minh voi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=>x\left(\dfrac{1}{2}+\dfrac{2}{3}\right)=\dfrac{10}{3}+1=\dfrac{13}{3}\)
\(=>x=\dfrac{13}{3}:\left(\dfrac{1}{2}+\dfrac{2}{3}\right)=\dfrac{13}{3}:\dfrac{7}{6}=\dfrac{26}{7}\)
5/6x - 1 = 10/3
5/6x = 10/3 + 1 = 13/3
X = 13/3 : 5/6 = 26/5
`1/2x^2(-2x^2y^2z).(-1/3)x^2y^3`
`=1/2 .(-2).(-1/3)x^{2+2+2}.y^{2+3}.z`
`=1/3x^6y^5z`
Ta có: \(\dfrac{1}{2}x^2\cdot\left(-2x^2y^2z\right)\cdot\left(-\dfrac{1}{3}\right)x^2y^3\)
\(=\left(\dfrac{1}{2}\cdot2\cdot\dfrac{1}{3}\right)\cdot\left(x^2\cdot x^2\cdot x^2\right)\cdot\left(y^2\cdot y^3\right)\cdot z\)
\(=\dfrac{1}{3}x^6y^5z\)
\(A=\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+...+\dfrac{2}{2021\cdot2023}\)
\(A=\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{2021}-\dfrac{1}{2023}\)
\(A=\dfrac{1}{1}-\dfrac{1}{2023}\\ A=\dfrac{2023}{2023}-\dfrac{1}{2023}\\ A=\dfrac{2022}{2023}\)
A=21.3+23.5+...+297.99�=21.3+23.5+...+297.99
A=11−13+13−15+...+197−199�=11−13+13−15+...+197−199
A=11−199�=11−199
A=9899
=
21−51+51−71+....+951−981
=12−198=21−981tự làm tiếp nha ( giống câu a)
\(\dfrac{5}{7}\times x+\dfrac{2}{5}=\dfrac{2}{3}\\ \dfrac{5}{7}\times x=\dfrac{2}{3}-\dfrac{2}{5}=\dfrac{10}{15}-\dfrac{6}{15}=\dfrac{4}{15}\\ x=\dfrac{4}{15}:\dfrac{5}{7}=\dfrac{4\times7}{15\times5}=\dfrac{28}{75}\)
Vậy `x=28/75`
`HaNa☘D`
\(\dfrac{5}{7}\times x+\dfrac{2}{5}=\dfrac{2}{3}\)
\(\dfrac{5}{7}\times x=\dfrac{2}{3}-\dfrac{2}{5}\)
\(\dfrac{5}{7}\times x=\dfrac{10}{15}-\dfrac{6}{15}\)
\(\dfrac{5}{7}\times x=\dfrac{4}{15}\)
\(x=\dfrac{4}{15}:\dfrac{5}{7}\)
\(x=\dfrac{4}{15}\times\dfrac{7}{5}\)
\(x=\dfrac{28}{75}\)
#Toru
còn chi tiết đây
a)1/5.8+1/8.11+1/11.14+...+1/x.(x+3)=101/1540
1/(5.8)+1/(8.11)+1/(11.14)+...1/x.(… =101/1540
3/(5.8)+3/(8.11)+...+3/x(x+3)=3.(10…
1/5-1/8+1/8-1/11+...+1/x-1/(x+3)=30…
1/5-1/(x+3)=303/1540
1/(x+3)=1/5-303/1540=1/308
=>x=305
lời giải nè : ấn vô dòng đen đen ở dưới ấy nhé
Tìm x, biết:a) 1/5.8 + 1/8.11 + 1/11.14 + ... + 1/x.(x+3)= 101/1540b) 1+ 1/3 + 1/6 + 1/10 +...+ 1/x.(x+1):2 = $1\frac{1991}{1993}$119911993
\(=\frac{3}{5}.\frac{17}{2}-1.\frac{22}{3}=\frac{51}{10}-\frac{22}{3}=-\frac{67}{30}\)