tìm x,y,z
\(2009-|x-2009|=x\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2009-|x-2009|=x
=>2009-x=|x-2009|
=>|x-2009|=-(x-2009)
=>x < hoặc = 2009
ta có: \(x^2+y^2\ge2xy\)
áp dụng tương tự cho với y,z và z,x
ta CM được: \(x^2+y^2+z^2\ge xy+yz+zx\)
Dấu = xaye ra <=> x=y=z
Thay vào pt 2 ta được: \(3x^{2009}=3^{2010}\Leftrightarrow x=3\)
vậy x=y=z=3
\(x^2+y^2+z^2=xy+yz+xz\)
\(\Leftrightarrow2x^2+2y^2+2z^2=2xy+2yz+2xz\)
\(\Leftrightarrow\left(x^2+y^2-2xy\right)+\left(y^2+z^2-2yz\right)+\left(x^2+z^2-2xz\right)=0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)
\(\Leftrightarrow.....\)
\(2009-|x-2009|=x\)
Nếu \(x\ge2009\Rightarrow2009-x+2009=x\)
\(\Rightarrow2.2009-2x\)
\(\Rightarrow x=2009\)
Nếu \(x< 2009\Rightarrow2009-2009+x=x\)
\(\Rightarrow0=0\)
Vậy với \(\forall x< 2009\)thì thỏa mãn
vậy với \(x\le2009\)thì \(2009-|x-2009|=x\)
\(x^2+y^2+z^2=xy+yz+xz\)
\(\Leftrightarrow2x^2+2y^2+2z^2-2xy-2yz-2xz=0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2=0\)
\(\Rightarrow x=y=z\)
Ta lại có : \(x^{2009}+y^{2009}+z^{2009}=3^{2010}\)
\(\Rightarrow3x^{2009}=3^{2010}\Rightarrow x^{2009}=3^{2009}\Rightarrow x=3\)
\(\Rightarrow x=y=z=3\)
Vậy .............
ta có \(\)X2+Y2+X2=XY+YZ+ZX
2X2+2Y2+2Z2-2XY-2YZ-2ZX=0
(X-Y)2+(Y-Z)2+(Z-X)2=0
SUY RA X=Y=Z
X2009+Y2009+Z2009=3X2009=32010
DỄ DÀNG SUY RA X=Y=Z=3
T ừ x2 + y2 + z2 = xy + yz + zx nhân 2 vế với 2 rồi chuyển vế ta có:
2x2 + 2y2 + 2z2 - 2xy -2 yz -2zx = 0
<=> (X^2 - 2xy + y^2 ) + ( x^ 2 -2zx + z^2) + (y^2 -2 yz+ z^2) =0
<=> ( x -y)^2 + (x - z)^2 + ( y-z)^2= 0
=> x-y=0; x-z=0; y-z= 0
=>. x=y=z thay vào x^2009+ y^2009 +z^2009= 3^2010
ta có 3x^2009 = 3^2010 = 3.3^ 2009 => x=3
Vậy x=y=z =3
a: =>|x-2009|=2009-x
=>x-2009<=0
=>x<=2009
b: =>2x-1=0 và y-2/5=0 và x+y-z=0
=>x=1/2 và y=2/5 và z=x+y=1/2+2/5=5/10+4/10=9/10
2009 - | x - 2009 | = x
=>| x - 2009 | = 2009 - x
=> x = 2009
\(|x-2009|=2009-x\) ( 1 )
\(ĐK:2009-x\ge0\)
\(-x\ge0-2009\)
\(-x\ge-2009\)
\(x\le2009\)
( 1 ) \(\Leftrightarrow\orbr{\begin{cases}x-2009=2009-x\\x-2009=-\left(2009-x\right)\end{cases}}\)
\(\orbr{\begin{cases}x+x=2009+2009\\x-2009=-2009+x\end{cases}}\)
\(\orbr{\begin{cases}2x=4018\\x-x=-2009+2009\end{cases}}\)
\(\orbr{\begin{cases}x=2009\\0x=0\left(llđ\forall x\right)\end{cases}}\)
Vậy \(x\le2009\) là nghiệm của phương trình