K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 8 2020

Bài làm:

Ta có: \(\left|x+4\right|=\left|2x-1\right|\)

\(\Leftrightarrow\orbr{\begin{cases}x+4=2x-1\\x+4=1-2x\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=5\\3x=-3\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=5\\x=-1\end{cases}}\)

26 tháng 8 2020

ok tks

a: TH1: x<-1/2

PT sẽ là -2x-1+3-x=4

=>-3x+2=4

=>-3x=2

=>x=-2/3(nhận)

TH2: -1/2<=x<3

Pt sẽ là 2x+1+3-x=4

=>x+4=4

=>x=0(nhận)

TH3: x>=3

=>x-3+2x+1=4

=>3x-2=4

=>x=2(loại)

b: TH1: x<-3/2

Pt sẽ là -2x-3+3-4x=x

=>-6x=x

=>x=0(loại)

TH2: -3/2<=x<3/4

PT sẽ là 2x+3+3-4x=x

=>-2x+6-x=0

=>-3x=-6

=>x=2(loại)

TH3: x>=3/4

PT sẽ là 2x+3+4x-3=x

=>6x=x

=>x=0(loại)

 

\(\dfrac{4-x}{-5}=\dfrac{-5}{4-x}\)

\(\left(4-x\right)^2=25=5^2=\left(-5\right)^2\)

4-x=5 hoặc 4-x=-5

x=-1 hoặc x=9

12 tháng 5 2021

bn ơi còn các câu còn lại là j ạ ???????????

5 tháng 9 2015

=> 4x - 1 - x + 1/4 = 0

=> 3x - 3/4 = 0 

=> 3x = 3/4

=> x = 1/4

Thực hiện phép tínha) \(\frac{\text{x + 9}}{x^2 - 9}-\frac{\text{3}}{\text{x^2 + 3x}}\)b) \(\frac{\text{3x + 5 }}{\text{x^2 - 5x }}+\frac{\text{ 25 - x }}{\text{25 - 5x }}\)c) \(\frac{\text{3 }}{\text{2x }}+\frac{\text{3x - 3 }}{\text{2x - 1 }}+\frac{ 2x^2 + 1 }{\text{4x^2 - 2x }}\)d) \(\frac{\text{1}}{\text{3x - 2 }}-\frac{1}{\text{3x + 2 }}- \frac{\text{3x - 6}}{\text{4 - 9x^2}}\)e) \(\frac{\text{18 }}{\text{(x - 3)(x^2 - 9) }}-\frac{\text{3 }}{\text{x^2 - 6x + 9 ...
Đọc tiếp

Thực hiện phép tính
a) \(\frac{\text{x + 9}}{x^2 - 9}-\frac{\text{3}}{\text{x^2 + 3x}}\)

b) \(\frac{\text{3x + 5 }}{\text{x^2 - 5x }}+\frac{\text{ 25 - x }}{\text{25 - 5x }}\)

c) \(\frac{\text{3 }}{\text{2x }}+\frac{\text{3x - 3 }}{\text{2x - 1 }}+\frac{ 2x^2 + 1 }{\text{4x^2 - 2x }}\)

d) \(\frac{\text{1}}{\text{3x - 2 }}-\frac{1}{\text{3x + 2 }}- \frac{\text{3x - 6}}{\text{4 - 9x^2}}\)
e) \(\frac{\text{18 }}{\text{(x - 3)(x^2 - 9) }}-\frac{\text{3 }}{\text{x^2 - 6x + 9 }}-\frac{\text{x}}{\text{x^2 - 9}}\)
g) \(\frac{\text{x + 2 }}{\text{x + 3 }}-\frac{\text{5 }}{\text{x^2 + x - 6 }}+\frac{\text{1}}{\text{2 - x}}\)
h) \(\frac{\text{4x }}{\text{x + 2 }}-\frac{\text{3x }}{\text{x - 2 }}+\frac{\text{12x}}{\text{x^2 - 4}}\)
i) \(\frac{\text{ x + 1 }}{\text{ x - 1 }}-\frac{\text{ x - 1 }}{\text{ x + 1 }}-\frac{\text{4}}{\text{1 - x^2}}\)
k) \(\frac{\text{ 3x + 21 }}{\text{ x^2 - 9 }}+\frac{\text{2 }}{\text{x + 3 }}-\frac{\text{3}}{\text{x - 3}}\)

 

0
22 tháng 10 2021

\(a,\Leftrightarrow2x^3-x^2+ax+b=\left(x-1\right)\left(x+1\right)\cdot a\left(x\right)\)

Thay \(x=1\Leftrightarrow2-1+a+b=0\Leftrightarrow a+b=-1\)

Thay \(x=-1\Leftrightarrow-2-1-a+b=0\Leftrightarrow b-a=3\)

Từ đó ta được \(\left\{{}\begin{matrix}a+b=-1\\-a+b=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-2\\b=1\end{matrix}\right.\)

\(b,\Leftrightarrow ax^3+bx^2+2x-1=\left(x-1\right)\left(x+6\right)\cdot b\left(x\right)\)

Thay \(x=1\Leftrightarrow a+b+2-1=0\Leftrightarrow a+b=-1\)

Thay \(x=-6\Leftrightarrow-216a+36b+12-1=0\Leftrightarrow216a-36b=11\)

Từ đó ta được \(\left\{{}\begin{matrix}a+b=-1\\216a-36b=11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{25}{252}\\b=-\dfrac{227}{252}\end{matrix}\right.\)

\(c,\Leftrightarrow ax^4+bx^3+1=\left(x+1\right)^2\cdot c\left(x\right)\)

Thay \(x=-1\Leftrightarrow a-b+1=0\Leftrightarrow b=a+1\)

\(\Leftrightarrow ax^4+\left(a+1\right)x^3+1⋮\left(x+1\right)\\ \Leftrightarrow ax^4+ax^3+x^3+1⋮\left(x+1\right)\\ \Leftrightarrow ax^3\left(x+1\right)+\left(x+1\right)\left(x^2-x+1\right)⋮\left(x+1\right)\\ \Leftrightarrow\left(x+1\right)\left(ax^3+x^2-x+1\right)⋮\left(x+1\right)\\ \Leftrightarrow ax^3+x^2-x+1⋮\left(x+1\right)\)

Thay \(x=-1\Leftrightarrow-a+1+1+1=0\Leftrightarrow a=3\Leftrightarrow b=4\)

=>1/2x-3/4y-1/5x-1/5y+1/5=2x-y-1 và 4(x+y-1)+3(4x-y-2)=2(2x-y-3)

=>-17/10x+1/20y=-6/5 và \(4x+4y-4+12x-3y-6=4x-2y-6\)

=>-17/10x+1/20y=-6/5 và 12x+3y=4

=>x=2/3; y=-4/3

8 tháng 3 2022

\(\dfrac{x-2}{x+1}-\dfrac{3}{x+2}>0.\left(x\ne-1;-2\right).\\ \Leftrightarrow\dfrac{x^2-4-3x-3}{\left(x+1\right)\left(x+2\right)}>0.\\ \Leftrightarrow\dfrac{x^2-3x-7}{\left(x+1\right)\left(x+2\right)}>0.\)    

Đặt \(f\left(x\right)=\dfrac{x^2-3x-7}{\left(x+1\right)\left(x+2\right)}>0.\)

Ta có: \(x^2-3x-7=0.\Rightarrow\left[{}\begin{matrix}x=\dfrac{3+\sqrt{37}}{2}.\\x=\dfrac{3-\sqrt{37}}{2}.\end{matrix}\right.\)

          \(x+1=0.\Leftrightarrow x=-1.\\ x+2=0.\Leftrightarrow x=-2.\)

Bảng xét dấu:

undefined

\(\Rightarrow f\left(x\right)>0\Leftrightarrow x\in\left(-\infty-2\right)\cup\left(\dfrac{3-\sqrt{37}}{2};-1\right)\cup\left(\dfrac{3+\sqrt{37}}{2};+\infty\right).\)

\(\sqrt{x^2-3x+2}\ge3.\\ \Leftrightarrow x^2-3x+2\ge9.\\ \Leftrightarrow x^2-3x-7\ge0.\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{3-\sqrt{37}}{2}.\\x=\dfrac{3+\sqrt{37}}{2}.\end{matrix}\right.\)

Đặt \(f\left(x\right)=x^2-3x-7.\)

\(f\left(x\right)=x^2-3x-7.\)

\(\Rightarrow f\left(x\right)\ge0\Leftrightarrow x\in(-\infty;\dfrac{3-\sqrt{37}}{2}]\cup[\dfrac{3+\sqrt{37}}{2};+\infty).\)

\(\Rightarrow\sqrt{x^2-3x+2}\ge3\Leftrightarrow x\in(-\infty;\dfrac{3-\sqrt{37}}{2}]\cup[\dfrac{3+\sqrt{37}}{2};+\infty).\)

1 tháng 12 2021

\(a,\left(12x^2y^2-6xy^2\right):3xy+2y=6xy^2\left(2x-1\right):3xy+2y=2y\left(2x-1\right)+2y=4xy-2y+2y=4xy\)

\(b,\dfrac{4}{x+1} + \dfrac{8}{\left(x+1\right)\left(x-1\right)}\)

\(=\dfrac{4\left(x-1\right)+8}{\left(x+1\right)\left(x-1\right)}\\ =\dfrac{4x-4+8}{\left(x+1\right)\left(x-1\right)}\\ =\dfrac{4x+4}{\left(x+1\right)\left(x-1\right)}\\ =\dfrac{4\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}=\dfrac{4}{x-1}\)

\(c,\dfrac{1 }{x+1}- \dfrac{1}{x-1} +\dfrac{ 2x}{x^2-1} \)

\(=\dfrac{x-1}{\left(x+1\right)\left(x-1\right)}-\dfrac{x+1}{\left(x+1\right)\left(x-1\right)}+\dfrac{2x}{\left(x+1\right)\left(x-1\right)}\)

\(=\dfrac{x-1-x-1+2x}{\left(x+1\right)\left(x-1\right)}\)

\(=\dfrac{2x-2}{\left(x+1\right)\left(x-1\right)}\)

\(=\dfrac{2\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}\)

\(=\dfrac{2}{x+1}\)

 

1 tháng 12 2021

\(a,=4xy-2y+2y=4xy\\ b,\dfrac{4}{x+1}+\dfrac{8}{\left(x+1\right)\left(x-1\right)}=\dfrac{4x-4+8}{\left(x+1\right)\left(x-1\right)}\\ =\dfrac{4x+4}{\left(x+1\right)\left(x-1\right)}=\dfrac{4\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}=\dfrac{4}{x-1}\\ c,\dfrac{1}{x+1}-\dfrac{1}{x-1}+\dfrac{2x}{x^2-1}=\dfrac{x-1-x-1+2x}{\left(x-1\right)\left(x+1\right)}\\ =\dfrac{2x-2}{\left(x-1\right)\left(x+1\right)}=\dfrac{2\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}=\dfrac{2}{x+1}\)