( 1/35 + 1/63 + 1/99 ) x X = 6/5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\dfrac{3}{2}\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{x}-\dfrac{1}{x+2}\right)=\dfrac{1}{5}\)
\(\Leftrightarrow\dfrac{1}{3}-\dfrac{1}{x+2}=\dfrac{1}{5}:\dfrac{3}{2}=\dfrac{2}{15}\)
\(\Leftrightarrow\dfrac{1}{x+2}=\dfrac{1}{5}\)
=>x+2=5
hay x=3
a) CÓ: A = (1-1/42).(1-1/52).(1-1/62)......(1-1/2002)
=\(\frac{4^2-1^2}{4^2}\). \(\frac{5^2-1^2}{5^2}\). \(\frac{6^2-1^2}{6^2}\)....... \(\frac{200^2-1^2}{200^2}\)
Ta có công thức sau : a2-b2= a2 -ab+ab-b2
= a(a-b) + b(a-b)
= (a+b)(a-b)
ÁP DỤNG CÔNG THỨC TRÊN VÀO BÀI TOÁN TA ĐƯỢC :
A= \(\frac{3.5}{4^2}\). \(\frac{4.6}{5^2}\). \(\frac{5.7}{6^2}\)......\(\frac{199.201}{200^2}\)
= \(\frac{\left(3.4.5.....199\right)\left(5.6.7....201\right)}{\left(4.5.6......200\right)^2}\)
= \(\frac{\left(3.4.5.......199\right)\left(5.6.7.....200.201\right)}{\left(4.5.6.....199.200\right)\left(4.5.6......200\right)}\)
= \(\frac{3.201}{200.4}\)
= \(\frac{603}{800}\)
b)Từ đề bài ta suy ra : B=\(\frac{1.3}{5.7}\).\(\frac{3.5}{7.9}\). \(\frac{5.7}{9.11}\)...... \(\frac{99.101}{103.105}\)
= \(\frac{1.3^2.5^2.7^2......99^2.101}{5.7^2.9^2.11^2....99^2.101^2.103^2.105}\)
=\(\frac{3^2.5}{101.103^2.105}\)
=\(\frac{3}{7500563}\)
a) \(A=\dfrac{1}{3}+\dfrac{1}{5}+\dfrac{1}{35}+\dfrac{1}{63}+\dfrac{1}{99}+\dfrac{1}{143}\)
\(A=\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+\dfrac{1}{7.9}+\dfrac{1}{9.10}+\dfrac{1}{143}\)
\(A=\dfrac{1}{2}.\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}\right)+\dfrac{1}{143}\)
\(A=\dfrac{1}{2}.\left(1-\dfrac{1}{100}\right)+\dfrac{1}{143}=\dfrac{1}{2}.\dfrac{99}{100}+\dfrac{1}{143}=\dfrac{99}{200}+\dfrac{1}{143}=\dfrac{99.143+200.1}{200.143}=\dfrac{14157+200}{28600}=\dfrac{14357}{28600}\)
b) \(x+\left(x+1\right)+\left(x+2\right)+...+\left(x+99\right)=14950\)
\(\Rightarrow x+x+...+x+\left(1+2+...+99\right)=14950\)
\(\Rightarrow100x+\left(\left(99+1\right):2\right).99:2=14950\)
\(\Rightarrow100x+2475=14950\Rightarrow100x=12475\Rightarrow x=\dfrac{12475}{100}=\dfrac{499}{4}\)
nhìn công thức đây này \(\sqrt[]{\sqrt{ }\hept{\begin{cases}\\\end{cases}}\frac{ }{ }^{ }_{ }\hept{\begin{cases}\\\\\end{cases}}\hept{\begin{cases}\\\\\end{cases}}\hept{\begin{cases}\\\\\end{cases}}\hept{\begin{cases}\\\end{cases}}\orbr{\begin{cases}\\\end{cases}}}\) xong rồi đó không cần cảm ơn
\(A=\frac{1}{1x3}+\frac{1}{3x5}+\frac{1}{5x7}+.......\frac{1}{13x15}=\frac{1}{2}x\frac{2}{1x3}+\frac{2}{3x5}.......+\frac{2}{13x15}\)
\(A=\frac{1}{2}x\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}\right)\)
Còn lại em nhân giống ở trên nhé
Đặt A = 1/15 + 1/35 + ... + 1/3135
A = 1/3.5 + 1/5.7 + ... + 1/55.57
2A = 2/3.5 + 2/5.7 + ... + 2/55.57
2A = 1/3 - 1/5 + 1/5 - 1/7 + ... + 1/55 - 1/57
2A = 1/3 - 1/57 = 6/19
A = 3/19
a) (x-2)(x+3) <0 => x-2 và x+3 phải trái dấu
=> x-2<0 và x+3>0
hoặc x-2>0 và x+3<0
=> x<2 và x>-3 => -3<x<2
hoặc x>2 và x<-3 ( vô lý ) ( loại )
=> x \(\in\) { -2;-1;0;1 }
Đúng 100%, tích nha, please!!
\((\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99})x=\frac{2}{3}\)
Đặt \(A=\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}\)
\(A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}\)
\(A=\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{9.11}\right)\)
\(A=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{11}\right)\)
\(A=\frac{1}{2}\left(1-\frac{1}{11}\right)\)
\(A=\frac{1}{2}.\frac{10}{11}=\frac{5}{11}\)
Thay A vào biểu thức
\(\Rightarrow\frac{5}{11}x=\frac{2}{3}\)
\(\Rightarrow x=\frac{22}{15}\)
P/s: Có thể tính sai :(
\(\left[\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}\right]\times x=\frac{2}{3}\)
Trước tiên mình tính dãy có dấu ngoặc đã
Đặt : \(S=\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}\)
\(=\frac{1}{2}\left[\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+\frac{1}{7\cdot9}+\frac{1}{9\cdot11}\right]\)
\(=\frac{1}{2}\left[\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+\frac{2}{9\cdot11}\right]\)
\(=\frac{1}{2}\left[1-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{11}\right]\)
\(=\frac{1}{2}\left[1-\frac{1}{11}\right]=\frac{1}{2}\cdot\frac{10}{11}=\frac{1\cdot10}{2\cdot11}=\frac{1\cdot5}{1\cdot11}=\frac{5}{11}\)
Thay vào biểu thức \(S=\frac{5}{11}\)ta lại có :
\(\frac{5}{11}\times x=\frac{2}{3}\)
\(\Leftrightarrow x=\frac{2}{3}:\frac{5}{11}\)
\(\Leftrightarrow x=\frac{2}{3}\cdot\frac{11}{5}\)
\(\Leftrightarrow x=\frac{22}{15}\)
Vậy \(x=\frac{22}{15}\)
\(\left(\frac{1}{35}+\frac{1}{63}+\frac{1}{99}\right)×x=\frac{6}{5}\)
\(\frac{3}{55}×x=\frac{6}{5}\)
\(x=\frac{6}{5}:\frac{3}{55}\)
\(x=22\)
vậy \(x=22\)
\(\left(\frac{1}{35}+\frac{1}{63}+\frac{1}{99}\right).x=\frac{6}{5}\)
\(\Leftrightarrow\left(\frac{1.99}{35.99}+\frac{1.55}{63.55}+\frac{1.35}{99.35}\right).x=\frac{6}{5}\)
\(\Leftrightarrow\left(\frac{99}{3465}+\frac{55}{3465}+\frac{35}{3465}\right).x=\frac{6}{5}\)
\(\Leftrightarrow\left(\frac{99+55+35}{3465}\right).x=\frac{6}{5}\)
\(\Leftrightarrow\frac{189}{3465}.x=\frac{6}{5}\)
\(\Leftrightarrow\frac{3}{55}.x=\frac{6}{5}\)
\(\Leftrightarrow x=\frac{6}{5}:\frac{3}{55}\)
\(\Leftrightarrow x=\frac{6}{5}.\frac{55}{3}\)
\(\Leftrightarrow x=\frac{330}{15}\)
\(\Leftrightarrow x=22\)
Vậy \(x=22.\)