CMR: \(\left|\sin1\right|+\left|\sin2\right|+...+\left|\sin3n\right|>\frac{8}{5}n,\forall n\inℕ^∗\)
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
HC
1
NV
Nguyễn Việt Lâm
Giáo viên
28 tháng 2 2021
Từ công thức truy hồi ta được:
\(u_n=sin1+\dfrac{sin2}{2^2}+\dfrac{sin3}{3^2}+...+\dfrac{sinn}{n^2}\)
\(\Rightarrow\left|u_n\right|=\left|sin1+\dfrac{sin2}{2^2}+...+\dfrac{sinn}{n^2}\right|\le\left|sin1\right|+\left|\dfrac{sin2}{2^2}\right|+...+\left|\dfrac{sinn}{n^2}\right|\)
\(\Rightarrow\left|u_n\right|< \left|1\right|+\left|\dfrac{1}{2^2}\right|+\left|\dfrac{1}{3^2}\right|+...+\left|\dfrac{1}{n^2}\right|=1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{n^2}\)
Lại có:
\(1+\dfrac{1}{2^2}+...+\dfrac{1}{n^2}< 1+\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{\left(n-1\right)n}=2-\dfrac{1}{n}< 2\)
\(\Rightarrow\left|u_n\right|< 2\Rightarrow u_n\) là dãy bị chặn
Với \(n=1\) thì đề sai, mà hình như với số nào đề cũng sai...