Tìm Min của C = 5x2 + 7y2 - 10xy +30x - 14y + 79
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
M + 5 x 2 − 2 x y = 6 x 2 + 10 x y − y 2 ⇒ M = 6 x 2 + 10 x y − y 2 − 5 x 2 − 2 x y ⇒ M = 6 x 2 + 10 x y − y 2 − 5 x 2 + 2 x y ⇒ M = 6 x 2 − 5 x 2 + ( 10 x y + 2 x y ) − y 2 ⇒ M = x 2 + 12 x y − y 2
Chọn đáp án A
Bài 2:
a: \(x^2+5x-6=\left(x+6\right)\left(x-1\right)\)
b: \(5x^2+5xy-x-y\)
\(=5x\left(x+y\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(5x-1\right)\)
c:\(-6x^2+7x-2\)
\(=-6x^2+3x+4x-2\)
\(=-3x\left(2x-1\right)+2\left(2x-1\right)\)
\(=\left(2x-1\right)\left(-3x+2\right)\)
1.
a) \(=x^2\left(x^2+2x+1\right)=x^2\left(x+1\right)^2\)
b) \(=\left(x+y\right)^3-\left(x+y\right)=\left(x+y\right)\left[\left(x+y\right)^2-1\right]\)
\(=\left(x+y\right)\left(x+y-1\right)\left(x+y+1\right)\)
c) \(=5\left[\left(x^2-2xy+y^2\right)-4z^2\right]=5\left[\left(x-y\right)^2-4z^2\right]\)
\(=5\left(x-y-2z\right)\left(x-y+2z\right)\)
2.
a) \(=x\left(x+2\right)+3\left(x+2\right)=\left(x+2\right)\left(x+3\right)\)
b) \(=5x\left(x+y\right)-\left(x+y\right)=\left(x+y\right)\left(5x-1\right)\)
c) \(=-\left[3x\left(2x-1\right)-2\left(2x-1\right)\right]=-\left(2x-1\right)\left(3x-2\right)\)
3.
b) \(=2x\left(x-1\right)+5\left(x-1\right)=\left(x-1\right)\left(2x+5\right)\)
c) \(=-\left[5x\left(x-3\right)-1\left(x-3\right)\right]=-\left(x-3\right)\left(5x-1\right)\)
4.
a) \(\Rightarrow\left(x-1\right)\left(5x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{5}\end{matrix}\right.\)
b) \(\Rightarrow2\left(x+5\right)-x\left(x+5\right)=0\)
\(\Rightarrow\left(x+5\right)\left(2-x\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-5\\x=2\end{matrix}\right.\)
Lời giải:
\(x^2+3y^2+10x-14y-2xy=11\)
$\Leftrightarrow (x^2-2xy+y^2)+2y^2+10x-14y=11$
$\Leftrightarrow (x-y)^2+10(x-y)+25+(2y^2-4y+2)=38$
$\Leftrightarrow (x-y+5)^2+2(y-1)^2=38$
$\Rightarrow (x-y+5)^2=38-2(y-1)^2\leq 38$
$\Rightarrow -\sqrt{38}\leq x-y+5\leq \sqrt{38}$
$\Leftrightarrow -\sqrt{38}-5\leq x-y\leq \sqrt{38}-5$
Vậy $A_{\min}=-\sqrt{38}-5$ và $A_{\max}=\sqrt{38}-5$
\(\Leftrightarrow\left(4x^2-20xy+25y^2\right)+3\left(x^2+10x+25\right)+\left(y^2+4y+4\right)=0\)
\(\Leftrightarrow\left(2x-5y\right)^2+3\left(x+5\right)^2+\left(y+2\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x-5y=0\\x+5=0\\y+2=0\end{matrix}\right.\) \(\Leftrightarrow\left(x;y\right)=\left(-5;-2\right)\)
a: =>x^2+10xy+25y^2+y^2-14y+49=0
=>(x+5y)^2+(y-7)^2=0
=>y-7=0 và x+5y=0
=>y=7 và x=-5y=-35
b: A=(x-1)(x+6)(x+2)(x+3)+2044
=(x^2+5x-6)(x^2+5x+6)+2044
=(x^2+5x)^2-36+2044
=(x^2+5x)^2+2008>=2008
Dấu = xảy ra khi x=0 hoặc x=-5
5 x 2 - 10 x y + 5 y 2 - 20 z 2 = 5 x 2 – 2 x y + y 2 – 4 z 2 = 5 x – y 2 – 2 z 2 = 5 x – y + 2 z x – y – 2 z
\(C=\left(5x^2-10xy+5y^2\right)+30\left(x-y\right)+\left(2y^2+16y+79\right)\)
\(=5\left(x-y\right)^2+30\left(x-y\right)+45+2\left(y^2+8y+16\right)+2\)
\(=5\left(x-y+3\right)^2+2\left(y+4\right)^2+2\ge2\)
Dấu "=" xảy ra <=> y + 4 = 0 và x - y + 3 = 0 <=> y = -4 và x = -7
Vậy min C = 2 tại y = -4 và x = -7
Ta có:
\(C=5x^2+7y^2-10xy+30x-14y+79\)
\(\Rightarrow C=\left(5x^2-10x\left(y-3\right)+5\left(y^2-6y+9\right)\right)+\left(2y^2+16y+32\right)+2\)
\(\Rightarrow C=5\left(x^2-2x\left(y-3\right)+5\left(y^2-6y+9\right)\right)+2\left(y^2+16y+32\right)+2\)
\(\Rightarrow C=5\left(x^2-2x\left(y-3\right)+\left(y-3\right)^2\right)+2\left(y+4\right)^2+2\)
\(\Rightarrow C=5\left(x-y+3\right)^2+2\left(y+4\right)^2+2\)
\(\Rightarrow C\ge5\times0+2\times0+2\)
\(\Rightarrow C\ge2\)
Dấu = xảy ra khi\(\hept{\begin{cases}x-y+3=0\\y+4=0\end{cases}\Rightarrow y=-4,}x=-7\)
#Cừu