Giải PT: \(x^2+2=\left(2x+1\right)\sqrt{x}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chú ý:
\(\left(x^2+2x\right)^2+4\left(x+1\right)^2=\left(x^2+2x\right)^2+4\left(x^2+2x+1\right)=\left(x^2+2x\right)^2+4\left(x^2+2x\right)+4\)
\(=\left(x^2+2x+2\right)^2\)
\(x^2+\left(x+1\right)^2+\left(x^2+x\right)^2\)
\(=\left(x^2+x\right)+x^2+x^2+2x+1\)
\(=\left(x^2+x\right)^2+2x^2+2x+1\)
\(=\left(x^2+x\right)^2+2\left(x^2+x\right)+1\)
\(=\left(x^2+x+1\right)^2\)
\(ĐK:-1\le x\le1\\ PT\Leftrightarrow13\left(1-2x^2\right)\sqrt{\left(1-x^2\right)\left(1+x^2\right)}+9\left(1+2x^2\right)\sqrt{\left(1+x^2\right)\left(1-x^2\right)}=0\\ \Leftrightarrow\sqrt{1-x^4}\left(13-26x^2+9+18x^2\right)=0\\ \Leftrightarrow\sqrt{1-x^4}\left(22-8x^2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}1-x^4=0\\22-8x^2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left(1+x^2\right)\left(1-x\right)\left(1+x\right)=0\\x^2=\dfrac{22}{8}\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x=1\left(tm\right)\\x=-1\left(tm\right)\end{matrix}\right.\\\left[{}\begin{matrix}x=\dfrac{\sqrt{11}}{2}\left(ktm\right)\\x=-\dfrac{\sqrt{11}}{2}\left(ktm\right)\end{matrix}\right.\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
Bài làm:
Ta có: \(\left(x^2+2\right)=\left(2x+1\right)\sqrt{x}\)
\(\Leftrightarrow\left(x^2+2\right)^2=\left(2x+1\right)^2x\)
\(\Leftrightarrow x^4+4x^2+4=\left(4x^2+4x+1\right)x\)
\(\Leftrightarrow x^4-4x^3+4-x=0\)
\(\Leftrightarrow x^3\left(x-4\right)-\left(x-4\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(x^3-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-4\right)\left(x^2+x+1\right)=0\)
Mà \(x^2+x+1>0\left(\forall x\right)\)
=> \(\orbr{\begin{cases}x-1=0\\x-4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\x=4\end{cases}}\)
Cho mk bổ sung cái đk là: \(x\ge0\) nhé:)