Tìm GTLN của biểu thức C=x+2/|x| với x là số nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(D=\dfrac{-x+12+8}{x-12}=-1+\dfrac{8}{x-12}\)
Để D nhỏ nhất thì x-12=-1
=>x=11
\(C=\dfrac{3x-40}{x-13}=\dfrac{3x-39-1}{x-13}=3-\dfrac{1}{x-13}\)
Để C lớn nhât thì 1/x-13 nhỏ nhất
=>x-13=-1
=>x=12
![](https://rs.olm.vn/images/avt/0.png?1311)
\(C=\frac{40-3x}{13-x}=\frac{39-3x+1}{13-x}=\frac{3\left(13-x\right)+1}{13-x}=3+\frac{1}{13-x}\)
Để C đạt giá trị lớn nhất thì \(\frac{1}{13-x}\) lớn nhất.
\(\frac{1}{13-x}\) lớn nhất khi 13 -x là số dương nhỏ nhất, hay 13 - x = 1 => x = 13 - 1 = 12
![](https://rs.olm.vn/images/avt/0.png?1311)
A lớn nhất<=>x lớn nhất<=>|x+5| cũng lớn nhất
Mà |x+5| <= 8
|x+5| lớn nhất<=>|x+5|=8<=>x=-13 hoặc x=3(chọn vì x lớn nhất)
Khi đó A=2.3^2+30=2.9+30=18+30=48
![](https://rs.olm.vn/images/avt/0.png?1311)
Vì (x+1)2008 \(\ge\) 0 với mọi x => - (x+1)2008 \(\le\) 0 => 20 - (x+1)2008 \(\le\) 20 + 0 = 20 với mọi x
=> A lớn nhất bằng 20 khi x+ 1= 0 <=> x = -1
b) Vì (x-1)2 \(\ge\) 0 với mọi x => (x-1)2 + 90 \(\ge\) 0 + 90 = 90 với mọi x
=> B nhỏ nhất = 90 khi x -1 = 0 <=> x = 1
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=\frac{17}{13-x}\)
de A Max thi 13 - x la so nguyen duong nho nhat
=> 13 - x = 1
=> x = 12
thay vao t co :
\(A=\frac{17}{1}=17\)
vay_
Ta có: \(C=\frac{x+2}{|x|}=\frac{x}{|x|}+\frac{2}{|x|}\)=>\(\orbr{\begin{cases}\frac{x}{-x}+\frac{2}{-x}=-1+\frac{-2}{x}\\\frac{x}{x}+\frac{2}{x}=1+\frac{2}{x}\end{cases}}\)
Ta thấy \(1+\frac{2}{x}>-1+\frac{-2}{x}\) nên xét: \(1+\frac{2}{x}\).
Ta có: \(\frac{2}{x}\le2\)\(\left(x\inℤ,x\ne0\right)\),suy ra: \(1+\frac{2}{x}\le3\)
Vậy GTLN của biểu thức C=3 khi x=1