Phân tích A= 3x4 - 5x3 + 16x2 - x + 15 có 1 nhân tử là x2+ãx+5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a: \(=5x\left(xy^2+3x+6y^2\right)\)
b: \(=\left(x-2\right)\left(x+3\right)-\left(x-2\right)\left(x+2\right)=\left(x-2\right)\left(x+3-x-2\right)=\left(x-2\right)\)
c: \(=\left(x-3\right)\left(x-4\right)\)
d: \(=x\left(x^2-2xy+y^2-9\right)\)
=x(x-y-3)(x-y+3)
e: \(=\left(x+y\right)^2-25=\left(x+y+5\right)\left(x+y-5\right)\)
f: \(=\left(x-4\right)\left(x+3\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(a,=\left(x-y\right)\left(x+y\right)-\left(x+y\right)=\left(x+y\right)\left(x-y-1\right)\\ b,=\left(x+y\right)\left(x-5\right)\\ c,=5x^2\left(x-y\right)-10x\left(x-y\right)=5x\left(x-2y\right)\left(x-y\right)\\ d,=x^2-2xy=x\left(x-2y\right)\\ e,=\left(3x-2y\right)\left(9x^2+6xy+4y^2\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(5x^3-10x^2+15x=5x\left(x^2-2x+3\right)\)
b) \(x^2-3x+2=x\left(x-2\right)-\left(x-2\right)=\left(x-2\right)\left(x-1\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) (x + y)2 - 2(x + y) + 1
= (x + y)2 - 2.1.(x + y) + 1
= (x + y - 1)2
b) x3 + 1 - x2 - x
= (x3 - x2) - (x - 1)
= x2(x - 1) - (x - 1)
= (x2 - 1)(x - 1) = (x - 1)(x + 1)(x - 1) = (x - 1)2(x + 1)
c) 27x3 - 0,001
= \(\left(3x\right)^3-\frac{1}{1000}=\left(3x\right)^3-\left(\frac{1}{10}\right)^3=\left(3x-\frac{1}{10}\right)\left(9x^2+\frac{3}{10}x+\frac{1}{100}\right)\)
d) 125x3 - 1 =(5x)3 - 1 = (5x - 1)(25x2 + 5x + 1)
e) (x2 + 4)2 - 16x2
= (x2 + 4)2 - (4x)2
= (x2 - 4x + 4)(x2 + 4x + 4)
= (x - 2)2(x + 2)2
= [(x - 2)(x + 2)]2
a.\(\left(x+y\right)^2-2\left(x+y\right)+1\)
\(=\left(x+y\right)^2-2.\left(x+y\right).1+1^2\)
\(=\left[\left(x+y\right)-1\right]^2\)
\(=\left(x+y-1\right)^2\)
b.\(x^3+1-x^2-x\)
\(=\left(x^3-x^2\right)+\left(1-x\right)\)
\(=x^2\left(x-1\right)-\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2-1\right)\)
\(=\left(x-1\right)^2\left(x+1\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a: \(50x^5-8x^3\)
\(=2x^3\left(25x^2-4\right)\)
\(=2x^3\left(5x-2\right)\left(5x+2\right)\)
b: \(x^4-5x^2-4y^2+10y\)
\(=\left(x^2-2y\right)\left(x^2+2y\right)-5\left(x^2-2y\right)\)
\(=\left(x^2-2y\right)\left(x^2+2y-5\right)\)
c: \(36a^2+12a+1-b^2\)
\(=\left(6a+1\right)^2-b^2\)
\(=\left(6a+1-b\right)\left(6a+1+b\right)\)
d: \(x^3+y^3-xy^2-x^2y\)
\(=\left(x+y\right)\left(x^2-xy+y^2\right)-xy\left(x+y\right)\)
\(=\left(x+y\right)\left(x^2-2xy+y^2\right)\)
\(=\left(x+y\right)\cdot\left(x-y\right)^2\)
e: Ta có: \(4x^2+4x-3\)
\(=4x^2+6x-2x-3\)
\(=2x\left(2x+3\right)-\left(2x+3\right)\)
\(=\left(2x+3\right)\left(2x-1\right)\)
f: Ta có: \(9x^4+16x^2-4\)
\(=9x^4+18x^2-2x^2-4\)
\(=9x^2\left(x^2+2\right)-2\left(x^2+2\right)\)
\(=\left(x^2+2\right)\left(9x^2-2\right)\)
g: Ta có: \(-6x^2+5xy+4y^2\)
\(=-6x^2+8xy-3xy+4y^2\)
\(=-2x\left(3x-4y\right)-y\left(3x-4y\right)\)
\(=\left(3x-4y\right)\left(-2x-y\right)\)
h: Ta có: \(\left(x^2+4x\right)^2+8\left(x^2+4x\right)+15\)
\(=\left(x^2+4x\right)^2+3\left(x^2+4x\right)+5\left(x^2+4x\right)+15\)
\(=\left(x^2+4x+3\right)\cdot\left(x^2+4x+5\right)\)
\(=\left(x+1\right)\left(x+3\right)\left(x^2+4x+5\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(4x^2-1\)
\(=\left(2x\right)^2-1^2\)
\(=\left(2x-1\right)\left(2x+1\right)\)
b) \(x^2-3y^2\)
\(=x^2-\left(y\sqrt{3}\right)^2\)
\(=\left(x-y\sqrt{3}\right)\left(x+y\sqrt{3}\right)\)
c) \(9x^2-\dfrac{1}{4}\)
\(=\left(3x\right)^2-\left(\dfrac{1}{2}\right)^2\)
\(=\left(3x-\dfrac{1}{2}\right)\left(3x+\dfrac{1}{2}\right)\)
d) \(\left(x-y\right)^2-4\)
\(=\left(x-y\right)^2-2^2\)
\(=\left(x-y-2\right)\left(x-y+2\right)\)
e) \(9-\left(x-y\right)^2\)
\(=3^2-\left(x-y\right)^2\)
\(=\left(3+x-y\right)\left(3-x+y\right)\)
f) \(\left(x^2+4\right)^2-16x^2\)
\(=\left(x^2+4\right)^2-\left(4x\right)^2\)
\(=\left(x^2-4x+4\right)\left(x^2+4x+4\right)\)
\(=\left(x-2\right)^2\left(x+2\right)^2\)
\(A=\left(3x^4+x^3+3x^2\right)-\left(6x^3+2x^2+6x\right)+\left(15x^2+5x+15\right)\)
\(=x^2\left(3x^2+x+3\right)-2\left(3x^2+x+3\right)+5\left(3x^2+x+3\right)\)
\(=\left(x^2-2x+5\right)\left(3x^2+x+3\right)\)
Đề sai rồi bạn
Nhân tử là x^2+cái gì x?