Cho tam giác ABC, gọi M, N lần lượt là các điểm thuộc cạnh AB, AC sao cho AM = 1/2 MB; AN = 3NC, K là trung điểm MN. Biểu thị \(\overrightarrow{AK}=m.\overrightarrow{AB}+n.\overrightarrow{AC}\), tích m.n = ...
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C x y a M N
G/s: Tam giác đều ABC có cạnh bằng a
Đặt AM=x, AN =y, x, y dương và bé hơn a
=> MB=a-x, NC=a-y
Theo bài ra ta có:
\(\frac{x}{a-x}+\frac{y}{a-y}=1\)
\(\Leftrightarrow-\frac{x}{a-x}-\frac{y}{a-y}=-1\)
\(\Leftrightarrow1-\frac{a}{a-x}+1-\frac{a}{a-y}=-1\)
\(\Leftrightarrow\frac{a}{a-x}+\frac{a}{a-y}=3\)
\(\Leftrightarrow\frac{3}{a}=\frac{1}{a-x}+\frac{1}{a-y}\ge\frac{\left(1+1\right)^2}{a-x+a-y}=\frac{4}{2a-\left(x+y\right)}\)
\(\Leftrightarrow x+y\le\frac{2a}{3}\)
Diện tích tam giác AMN:
\(S_{\Delta AMN}=\frac{1}{2}AM.AN.\sin\widehat{MAN}=\frac{1}{2}.xy.\frac{\sqrt{3}}{2}\)
\(=\frac{\sqrt{3}}{4}.xy\le\frac{\sqrt{3}}{4}\frac{\left(x+y\right)^2}{4}\le\frac{\sqrt{3}}{16}\frac{4a^2}{9}=\frac{\sqrt{3}a^2}{36}\)
Dấu "=" xảy ra khi và chỉ khi: \(x=y=\frac{a}{3}\)
Vậy AM=1/3AB, AN=1/3AC thì diện tích tam giác AMN lớn nhất bằng \(\frac{\sqrt{3}a^2}{36}\)
B N A M C \(S_{BMC_{ }_{ }}=\frac{BM.CA}{2}=\frac{20.60}{2}=600cm^2\)
Ta có MN là đường tb của tam giác ABC => MN//AC và MN.2 = AC
=> MN là đường cao của AB ,MN=30 cm
=> SABN=30.40:2=600cm2
b)SAMNC=(MN+AC) .AM:2=(30+60).20:2=900cm2
c)SMAC=MA.AC:2
SANC=CA.MA:2
=> SMAC=SANC=>SAMO=SCON
Ta có: MN // AB (gt). \(\Rightarrow\left\{{}\begin{matrix}\widehat{MAB}=\widehat{ABC}\\\widehat{NAC}=\widehat{ACB}\end{matrix}\right.\) (so le trong).
Mà \(\widehat{ABC}=\widehat{ACB}\) (Tam giác ABC cân).
\(\Rightarrow\widehat{MAB}=\widehat{NAC.}\)
Xét tam giác AMB và tam giác ANC có:
+ AM = AN (A là trung điểm của MN).
+ AB = AC (gt).
+ \(\widehat{MAB}=\widehat{NAC}\left(cmt\right).\)
\(\Rightarrow\) Tam giác AMB = Tam giác ANC (c - g - c).
Xét tứ giác MNCB có: \(\text{MN // CB}\) (gt).
\(\Rightarrow\) Tứ giác MNCB là hình thang.
Mà \(\widehat{M}=\widehat{N}\) (Tam giác AMB = Tam giác ANC).
\(\Rightarrow\) Tứ giác MNCB là hình thang cân.
A B C M N D E
Xét tam giác AMN có AM = AN nên tam giác AMN cân tại A.
Vậy thì trung tuyến AD chính là phân giác của góc \(\widehat{MAN}\)
Xét tam giác ABC có AB = AC nên tam giác ABC cân tại A.
Vậy thì trung tuyến AE chính là phân giác của góc \(\widehat{BAC}\)
Từ đó ta có D, E cùng thuộc tia phân giác của góc A hay A, D, E thẳng hàng.
\(AM=\frac{1}{2}MB\Rightarrow\overrightarrow{AM}=\frac{1}{3}\overrightarrow{AB}\)
\(AN=3NC\Rightarrow\overrightarrow{AN}=\frac{3}{4}\overrightarrow{AC}\)
\(\overrightarrow{AK}=\frac{1}{2}\overrightarrow{AM}+\frac{1}{2}\overrightarrow{AN}=\frac{1}{2}.\frac{1}{3}\overrightarrow{AB}+\frac{1}{2}.\frac{3}{4}\overrightarrow{AC}=\frac{1}{6}\overrightarrow{AB}+\frac{3}{8}\overrightarrow{AC}\)
\(\Rightarrow\left\{{}\begin{matrix}m=\frac{1}{6}\\n=\frac{3}{8}\end{matrix}\right.\) \(\Rightarrow mn=\frac{1}{16}\)