Giải pt: a) (2x+3)(x-2)=9
b) x3+5x+6=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c: =>(x+2)(x+3)(x-5)(x-6)=180
=>(x^2-3x-10)(x^2-3x-18)=180
=>(x^2-3x)^2-28(x^2-3x)=0
=>x(x-3)(x-7)(x+4)=0
=>\(x\in\left\{0;3;7;-4\right\}\)
c: =>(x-3)(x+2)(2x+1)(3x-1)=0
=>\(x\in\left\{3;-2;-\dfrac{1}{2};\dfrac{1}{3}\right\}\)
a) ( 5x - 4)(4x + 6)=0
<=> \([^{5x-4=0}_{4x+6=0}< =>[^{x=\frac{4}{5}}_{x=\frac{-6}{4}}\)
Vậy S = \(\left\{\frac{4}{5};\frac{-6}{4}\right\}\)
b) ( 3,5x - 7 )( 2,1x - 6,3 ) = 0
<=> \([^{3,5x-7=0}_{2,1x-6,3=0}< =>[^{x=2}_{x=3}\)
Vậy S = \(\left\{2;3\right\}\)
c) ( 4x - 10 )( 24 + 5x ) = 0
<=> \([^{4x-10=0}_{24+5x=0}< =>[^{x=\frac{5}{2}}_{x=\frac{-24}{5}}\)
Vậy S = \(\left\{\frac{5}{2};\frac{-24}{5}\right\}\)
d) ( x - 3 )( 2x + 1 ) = 0
<=> \(\left[{}\begin{matrix}x-3=0\\2x+1=0\end{matrix}\right.< =>\left[{}\begin{matrix}x=3\\x=\frac{-1}{2}\end{matrix}\right.\)
Vậy S = \(\left\{3;\frac{-1}{2}\right\}\)
e) ( 5x - 10 )( 8 - 2x ) = 0
<=> \(\left[{}\begin{matrix}5x-10=0\\8-2x=0\end{matrix}\right.< =>\left[{}\begin{matrix}x=2\\x=4\end{matrix}\right.\)
Vậy S = \(\left\{2;4\right\}\)
f) ( 9 - 3x )( 15 + 3x ) = 0
<=> \(\left[{}\begin{matrix}9-3x=0\\15+3x=0\end{matrix}\right.< =>\left[{}\begin{matrix}x=3\\x=-5\end{matrix}\right.\)
Vậy S = \(\left\{3;-5\right\}\)
Học tốt nhaaa !
a/ pt đãcho tương đương với
6x\(^2\)+ 21x -2x-7-6x+5x-6x+5= 16
<=>18x=18
=> x=1
b/ pt đã cho tương đương với
10x\(^2\)+9x-10x\(^2\)-15x+2x+3= 8
<=> -4x=5
<=.> x=-\(\frac{5}{4}\)
c/ pt đã cho tương đương với
21x-15x\(^2\)-35+25x+15x\(^2\)-10x+6x-4-2=0
<=>42x=41
<=> x= \(\frac{41}{42}\)
d/ pt đã cho tương đương với
( x\(^2\)+x )(x+6)-x\(^3\)=5x
<=> x\(^3\)+6x\(^2\)+x\(^2\)+6x-x\(^3\)=5x
<=> 8x\(^2\)+6x-5x=0
<=>8x\(^2\)+16x-10x-5x=0
<=> (x+2)2x-5(x+2)=0
<=> (x+2)(2x-5)=0
<=>x+2=0 hoặc 2x+5=0
=> x=-2 hoặc x= -\(\frac{5}{2}\)
\(a, x(x+3)-(2x-1)(x+3)=0\)
\(⇔(x+3)(1-x)=0\)
\(⇔\left[\begin{array}{} x+3=0\\ 1-x=0 \end{array}\right.\)
\(⇔\left[\begin{array}{} x=-3\\ x=1 \end{array}\right.\)
Vậy phương trình có tập nghiệm là S={\(-3; 1\)}
\(b, 3x-5(x+2)=3(4-2x)\)
\(⇔3x-5x-10=12-6x\)
\(⇔3x-5x+6x=12+10\)
\(⇔4x=22\)
\(⇔x=\dfrac{22}{4}\)
Vậy pt có 1 nghiệm là \(x=\dfrac{22}{4}\)
\(c, (4x-3)(5x-6)=(4x-3)(2x-3)\)
\(⇔5x-6=2x-3\)
\(⇔5x-2x=-3+6\)
\(⇔3x=3\)
\(⇔x=1\)
Vậy pt có 1 nghiệm là \(x=1\)
b) 5x(x-2000)-x+2000=0
\(\Rightarrow5x\left(x-2000\right)-\left(x-2000\right)=0\\ \Rightarrow\left(x-2000\right)\left(5x-1\right)=0\)
\(\Rightarrow\left\{{}\begin{matrix}x-2000=0\\5x-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0+2000\\5x=0+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2000\\5x=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2000\\x=\dfrac{1}{5}\end{matrix}\right.\)
a) ( 2x + 3 )( x - 2 ) = 9
<=> 2x2 - x - 6 - 9 = 0
<=> 2x2 - x - 15 = 0
<=> 2x2 + 5x - 6x - 15 = 0
<=> x( 2x + 5 ) - 3( 2x + 5 ) = 0
<=> ( 2x + 5 )( x - 3 ) = 0
<=> \(\orbr{\begin{cases}2x+5=0\\x-3=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-\frac{5}{2}\\x=3\end{cases}}\)
Vậy S = { -5/2 ; 3 }
b) x3 + 5x + 6 = 0
Thử với x = -1 ta có
(-1)3 + 5.(-1) + 6 = -1 - 5 + 6 = 0
Vậy -1 là nghiệm của phương trình . Theo hệ quả của định lí Bézuote thì phương trình trên chia hết cho ( x + 1 )
Thực hiện phép chia x3 + 5x + 6 cho x + 1 ta được x2 - x + 6
Vậy ta phân tích được ( x + 1 )( x2 - x + 6 ) = 0
=> \(\orbr{\begin{cases}x+1=0\\x^2-x+6=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\x^2-x+6=0\left(1\right)\end{cases}}\)
Ta có : (1) = x2 - x + 1/4 + 23/4 = ( x - 1/2 )2 + 23/4 ≥ 23/4 > 0 ∀ x
=> (1) vô nghiệm
Vậy phương trình có nghiệm duy nhất là x = -1
a, \(\left(2x+3\right)\left(x-2\right)=9\Leftrightarrow2x^2-4x+3x-6=9\)
\(\Leftrightarrow2x^2-x-15=0\Leftrightarrow\left(2x+5\right)\left(x-3\right)=0\)
\(x=-\frac{5}{2};3\)
b, \(x^3+5x+6=0\Leftrightarrow x=-1\)
c,