Cho tam giác ABC cân tại A, trên tia đối của CB, lấy điểm D. Chứng minh rằng AD>AB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABD và ΔACE có
AB=AC
\(\widehat{ABD}=\widehat{ACE}\)
BD=CE
DO đó: ΔABD=ΔACE
Suy ra: AD=AE
hay ΔADE cân tại A
b: Xét ΔABH vuông tại H và ΔACK vuông tại K có
AB=AC
\(\widehat{HAB}=\widehat{KAC}\)
Do đó: ΔABH=ΔACK
Suy ra: BH=CK và AH=AK
Xét ΔADE có
AH/AD=AK/AE
nên HK//DE
hay HK//BC
c: Xét ΔHBD vuông tại H và ΔKCE vuông tại K có
BD=CE
\(\widehat{HBD}=\widehat{KCE}\)
Do đó: ΔHBD=ΔKCE
Suy ra: \(\widehat{HBD}=\widehat{KCE}\)
=>\(\widehat{OCB}=\widehat{OBC}\)
=>ΔOBC cân tại O
=>OB=OC
mà HB=CK
nên OB+HB=OC+CK
=>OH=OK
hay ΔOHK cân tại O
Bạn vẽ hình giúp mình nghen
a. Kẻ AI vuông góc với BC, ta có ABC là tam giác cân tại A nên: AI vừa là đường cao vừa là đường trung tuyến
\(\Rightarrow BI=IC\)
Mà DI=DB+BI và EI=EC+CI và BD=EC \(\Rightarrow DI=EI\)
Suy ra AI cũng là đường cao cũng là đường trung tuyến của tam giác AED
\(\Rightarrow\)Tam giác ADE cân tại A
b. Xét \(\Delta ABD\) và \(\Delta ACE\) có: \(\left\{{}\begin{matrix}AB=AC\\DB=EC\\AD=AE\end{matrix}\right.\)
\(\Rightarrow\)\(\Delta ABD\) = \(\Delta ACE\) (c-c-c)
\(\Rightarrow\widehat{DAB}=\widehat{EAC}\)
Xét \(\Delta AHB\) vuông tại H và \(\Delta AKC\) vuông tại K có: \(\left\{{}\begin{matrix}AB=AC\\\widehat{DAB}=\widehat{EAC}\end{matrix}\right.\)
\(\Rightarrow\)\(\Delta AHB\)=\(\Delta AKC\) (dpcm)
\(\Rightarrow AH=AK\)
Xét \(\Delta AHO\) vuông tại H và \(\Delta AKO\) vuông tại K có: \(\left\{{}\begin{matrix}AH=AK\\AOchung\end{matrix}\right.\)
\(\Rightarrow\)\(\Delta AHO\) = \(\Delta AKO\) (dpcm)
a: Xét ΔABD và ΔACE có
AB=AC
\(\widehat{ABD}=\widehat{ACE}\)
BD=CE
Do đó: ΔABD=ΔACE
Suy ra: AD=AE
hay ΔADE cân tại A
b: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
\(\widehat{BAH}=\widehat{CAK}\)
Do đó: ΔAHB=ΔAKC
Suy ra: \(\widehat{AHB}=\widehat{AKC}\)
*) Ta có: ΔABC cân tại A
BD = CE (giả thiết)
Suy ra: ΔABD = ΔACE (c.g.c)
⇒ AD = AE ( hai cạnh tương ứng)
*) Tam giác ADE có AD = AE nên tam giác này cân tại A (theo định nghĩa tam giác cân)
Hình vẽ:
A B C D E
Giải:
Vì tam giác \(ABC\) cân tại \(A\):
\(\Rightarrow\widehat{ABC}=\widehat{ACB}\)
\(\Rightarrow\widehat{ABD}=\widehat{ACE}\) ( góc bù )
Xét \(\Delta ABD\) và \(\Delta ACE\) có:
\(AB=AC \) \(\left(gt\right)\)
\(\widehat{ABD}=\widehat{ACE}\) \(\left(cmt\right)\)
\(BD=CE \) \(\left(gt\right)\)
Do đó: \(\Delta ABD=\Delta ACE\) \(\left(c.g.c\right)\)
\(\Rightarrow AD=AE\) ( cặp cạnh tương ứng )
\(\Rightarrow\Delta ADE\) cân tại \(A\).
Bài làm
Bạn tự vẽ hình nhé
Vì tam giác ABCABC cân tại A:
⇒ˆABC=ˆACB⇒ABC^=ACB^
⇒ˆABD=ˆACE⇒ABD^=ACE^ ( góc bù )
Xét ΔABDΔABD và ΔACEΔACE có:
AB=ACAB=AC (gt)
ˆABD=ˆACEABD^=ACE^ (cmt)
BD=CEBD=CE (gt)(gt)
Do đó: ΔABD=ΔACEΔABD=ΔACE (c.g.c)(c.g.c)
⇒AD=AE⇒AD=AE ( cặp cạnh tương ứng )
⇒ΔADE⇒ΔADE cân tại A
a: Xét ΔABD và ΔACE có
AB=AC
\(\widehat{ABD}=\widehat{ACE}\)
BD=CE
Do đó; ΔABD=ΔACE
Suy ra: AD=AE
hay ΔADE cân tại A
Xét ΔABH vuông tại H và ΔACK vuông tại K có
AB=AC
\(\widehat{HAB}=\widehat{KAC}\)
Do đó: ΔABH=ΔACK
Suy ra: BH=CK
b: Ta có: ΔABH=ΔACK
nên \(\widehat{ABH}=\widehat{ACK}\)
c: Ta có: \(\widehat{OBC}=\widehat{HBD}\)
\(\widehat{OCB}=\widehat{KCE}\)
mà \(\widehat{HBD}=\widehat{KCE}\)
nên \(\widehat{OBC}=\widehat{OCB}\)
hay ΔOBC cân tại O
a: Xét ΔABD và ΔACE có
AB=AC
\(\widehat{ABD}=\widehat{ACE}\)
BD=CE
Do đó: ΔABD=ΔACE
Suy ra: AD=AE
Xét ΔBHD vuông tại H và ΔCKE vuông tại K có
BD=CE
\(\widehat{D}=\widehat{E}\)
Do đó: ΔBHD=ΔCKE
b: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
\(\widehat{HAB}=\widehat{KAC}\)
Do đó: ΔAHB=ΔAKC
c: Xét ΔADE có
AH/AD=AK/AE
nên HK//DE
hay HK//BC
A B C D 1 2 1 2
Ta có : \(\widehat{C_2}=\widehat{A_1}+\widehat{B}\)( ĐL góc ngoài của tam giác )
\(\Rightarrow\widehat{C_2}>\widehat{B}\)
mà \(\widehat{B}=\widehat{C_1}\)( \(\Delta ABC\)cân )
\(\Rightarrow\widehat{C_2}>\widehat{C_1}\)
Ta có : \(\widehat{C_1}=\widehat{A_2}+\widehat{D}\)( ĐL góc ngoài của tam giác )
\(\Rightarrow\widehat{C_1}>\widehat{D}\)
mà \(\widehat{C_2}>\widehat{C_1}\left(cmt\right)\)
\(\Rightarrow\widehat{C_2}>\widehat{D}\)
Xét \(\Delta ACD\)có : \(\widehat{C_2}>\widehat{D}\left(cmt\right)\)
\(\Rightarrow AD>AC\)
mà \(AC=AB\)( \(\Delta ABC\)cân )
\(\Rightarrow AD>AB\left(đpcm\right)\)