(4x-1)^3-(4x-3)(16x^2+3)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(4x-1\right)\left(4x-1\right)^2-\left(4x-3\right)\left(16x^2+3\right)\)
\(=\left(4x-1\right)^3-\left(4x-3\right)\left(16x^2+3\right)\)
\(=64x^3-48x^2+12x-1-64x^3-12x+48x^2-9\)
=-10
Bạn nhân đa thức với đa thức
Theo bài ra, ta suy ra được:
32x^5 +1 -(32x^5 -1) =2
2 = 2
Vậy có vô số x thỏa mãn đề bài.
b: \(\Leftrightarrow32x^5+1-32x^5+1=2\)
=>0x=0(luôn đúng)
a) \(4x^2+16x+3=0\)
\(\Delta'=84-12=72\Rightarrow\sqrt[]{\Delta'}=6\sqrt[]{2}\)
Phương trình có 2 nghiệm
\(\left[{}\begin{matrix}x=\dfrac{-8+6\sqrt[]{2}}{4}\\x=\dfrac{-8-6\sqrt[]{2}}{4}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-2\left(4-3\sqrt[]{2}\right)}{4}\\x=\dfrac{-2\left(4+3\sqrt[]{2}\right)}{4}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-\left(4-3\sqrt[]{2}\right)}{2}\\x=\dfrac{-\left(4+3\sqrt[]{2}\right)}{2}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3\sqrt[]{2}-4}{2}\\x=\dfrac{-3\sqrt[]{2}-4}{2}\end{matrix}\right.\)
b) \(7x^2+16x+2=1+3x^2\)
\(4x^2+16x+1=0\)
\(\Delta'=84-4=80\Rightarrow\sqrt[]{\Delta'}=4\sqrt[]{5}\)
Phương trình có 2 nghiệm
\(\left[{}\begin{matrix}x=\dfrac{-8+4\sqrt[]{5}}{4}\\x=\dfrac{-8-4\sqrt[]{5}}{4}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-4\left(2-\sqrt[]{5}\right)}{4}\\x=\dfrac{-4\left(2+\sqrt[]{5}\right)}{4}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\left(2-\sqrt[]{5}\right)\\x=-\left(2+\sqrt[]{5}\right)\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=-2+\sqrt[]{5}\\x=-2-\sqrt[]{5}\end{matrix}\right.\)
c) \(4x^2+20x+4=0\)
\(\Leftrightarrow4\left(x^2+5x+1\right)=0\)
\(\Leftrightarrow x^2+5x+1=0\)
\(\Delta=25-4=21\Rightarrow\sqrt[]{\Delta}=\sqrt[]{21}\)
Phương trình có 2 nghiệm
\(\left[{}\begin{matrix}x=\dfrac{-5+\sqrt[]{21}}{2}\\x=\dfrac{-5-\sqrt[]{21}}{2}\end{matrix}\right.\)
a) \(\left(x+3\right)^2+\left(x-3\right)^2+2\left(x^2+9\right)\)
\(=\left(x+3\right)^2+2\left(x+3\right)\left(x-3\right)+\left(x-3\right)^2\)
\(=\left[\left(x+3\right)+\left(x-3\right)\right]^2\)
\(=\left(x+3+x-3\right)^2\)
\(=\left(2x\right)^2\)
\(=4x^2\)
b) \(\left(4x-1\right)^3-\left(4x-3\right)\left(16x^2+3\right)\)
\(=\left(64x^3-48x^2+12x-1\right)-\left(64x^3+12x-48x^2-9\right)\)
\(=64x^3-48x^2+12x-1-64x^3-12x+48x^2+9\)
\(=\left(64x^3-64x^3\right)-\left(48x^2-48x^2\right)+\left(12x-12x\right)-\left(1-9\right)\)
\(=0-0+0+8\)
\(=8\)
a) (x + 3)² + (x - 3)² + 2(x² - 9)
= (x + 3)² + 2(x + 3)(x - 3) + (x - 3)²
= (x + 3 + x - 3)²
= (2x)²
= 4x²
b) (4x - 1)³ - (4x - 3)(16x² + 3)
= 64x³ - 48x² + 12x - 1 - 64x³ - 12x + 48x² + 9
= (64x³ - 64x³) + (-48x² + 48x²) + (12x - 12x) + (-1 + 9)
= 8
b: \(\Leftrightarrow32x^5+1-32x^5+1=2\)
=>2=2(luôn đúng)
a: \(\Leftrightarrow\left[\left(x-3\right)^2-\left(x+3\right)^2\right]\left[\left(x-3\right)^2+\left(x+3\right)^2\right]+24x^3=216\)
\(\Leftrightarrow-12x\left(2x^2+18\right)+24x^3=216\)
=>-216x=216
hay x=-1
\(=64x^3-48x^2+12x-1-\left(64x^3-48x^2+12x-9\right)\)
\(=64x^3-48x^2+12x-1-64x^3+48x^2-12x+9\)
\(=8\)
VẬY BIỂU THỨC CÓ GIÁ TRỊ = 8.
( 4x - 1 )3 - ( 4x - 3 )( 16x2 + 3 )
= 64x3 - 48x2 + 12x - 1 - ( 64x3 - 48x2 + 12x - 9 )
= 64x3 - 48x2 + 12x - 1 - 64x3 + 48x2 - 12x + 9
= -1 + 9 = 8