/2x-1/3/=x+1
tìm x biết
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
\(\left(4x^2+4x+1\right)-y^2=\left(2x+1\right)^2-y^2=\left(2x+1-y\right)\left(2x+1+y\right)\)
b.
\(\Leftrightarrow2x^2+2x-x-1-2x^2-3x+1=0\)
\(\Leftrightarrow-2x=0\)
\(\Leftrightarrow x=0\)
1,a, \(\left(2x+1\right)\left(4x^2-2x+1\right)-8x\left(x^2+2\right)=17\)
\(\Leftrightarrow8x^3+1-8x^3-16x=17\)
\(\Leftrightarrow-16x=16\)
\(\Leftrightarrow x=-1\)
\(b,x^2-2x+5\left(x-2\right)=0\)
\(\Leftrightarrow x\left(x-2\right)+5\left(x-2\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+5=0\\x-2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-5\\x=2\end{cases}}}\)
2,\(M=x^2+2x+6=x^2+2x+1+5=\left(x+1\right)^2+5\ge5\)
Dấu "=" xảy ra <=> x + 1 = 0
<=> x = -1
Vậy \(M_{min}=5\Leftrightarrow x=-1\)
Bài 1:
a) \(A=-\left(2x-5\right)^2+6\left|2x-5\right|+4=-\left[\left(2x-5\right)^2-6\left|2x-5\right|+9\right]+13=-\left(\left|2x-5\right|-3\right)^2+13\le13\)
\(maxA=13\Leftrightarrow\) \(\left[{}\begin{matrix}2x-5=3\\2x-5=-3\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=1\end{matrix}\right.\)
b) \(B=-x^2-y^2+2x-6y+9=-\left(x^2-2x+1\right)-\left(y^2+6y+9\right)+19=-\left(x-1\right)^2-\left(y+3\right)^2+19\le19\)
\(maxC=19\Leftrightarrow\) \(\left\{{}\begin{matrix}x=1\\y=-3\end{matrix}\right.\)
Bài 2:
\(A=2\left(x^3-y^3\right)-3\left(x+y\right)^2=2\left(x-y\right)\left(x^2+xy+y^2\right)-3\left(x^2+2xy+y^2\right)=4\left(x^2+xy+y^2\right)-3\left(x^2+2xy+y^2\right)=x^2-2xy+y^2=\left(x-y\right)^2=2^2=4\)
bài 2
\(A=2\left(x-y\right)\left(x^2+xy+y^2\right)-3\left(x^2+2xy+y^2\right)\)
\(A=2.2\left(x^2+xy+y^2\right)-3\left(x^2+2xy+y^2\right)\)
\(A=\left(4x^2+4xy+4y^2\right)+\left(-3x^2-6xy-3y^2\right)\)
\(A=x^2-2xy+y^2=\left(x-y\right)^2=2^2=4\)
a) \(3\frac{1}{3}\left(3\frac{1}{4}+2x\right)=6\frac{2}{3}\)
\(3\frac{1}{3}\times3\frac{1}{4}+2x=6\frac{2}{3}\)
\(10\frac{5}{6}+2x=6\frac{2}{3}\)
\(2\times x=6\frac{2}{3}+10\frac{5}{6}=17,5\)
\(x=17,5\div2=8,75\)
Vậy x = 8,75
b) \(x-25\%x=\frac{6}{11}\left(\frac{1}{2}+\frac{3}{4}-\frac{1}{3}\right)\)
\(x-\frac{25}{100}x=\frac{6}{11}\left(\frac{1}{2}+\frac{3}{4}-\frac{1}{3}\right)\)
\(x-\frac{1}{4}\times x=\frac{6}{11}\times1\frac{7}{12}=\frac{19}{22}\)
\(x\times x=\frac{19}{22}+\frac{1}{4}=\frac{49}{44}\)
\(\Rightarrow2x\left(x\times x\right)=\frac{49}{44}\)
\(x=\frac{49}{44}\div2=\frac{49}{88}\)
Vậy x = \(\frac{49}{88}\)
c) \(\left(4,5-2x\right)\times1\frac{4}{7}=\frac{11}{14}\)
\(4,5-2x\times1\frac{4}{7}=\frac{11}{14}\)
\(-2x\times1\frac{4}{7}=\frac{11}{14}-4,5=-3\frac{5}{7}\)
\(-2\times x=-3\frac{5}{7}\div1\frac{4}{7}=-2\frac{4}{11}\)
\(x=-2\frac{4}{11}\div\left(-2\right)=1\frac{2}{11}\)
Vậy x = \(1\frac{2}{11}\)
d) \(-3^2-|2x+3|=4\)
\(9-|2x+3|=4\)
\(-|2x+3|=4-9=-5\)
\(-|2x|=-5-|3|=-8\)
\(-|x|=-8\div2=-4\)
\(-x=4\Rightarrow x=-4\)
Vậy x = -4 (-x được xem là số đối của x)
\(15x^2+30=0\\ \Rightarrow x^2+2=0\left(vô.lí\right)\\ \Rightarrow x\in\varnothing\)
=>10x+15y=5m và -10x+2y=-2
=>17y=5m-2 và -5x+y=-1
=>y=5/17m-2/17 và 5x-y=1
=>y=5/17m-2/17 và 5x=1+y=5/17m+15/17
=>y=5/17m-2/17 và x=1/17m+5/17
x>0; y>0
=>5m-2>0 và m+5>0
=>m>2/5
\(\left|\frac{2x-1}{3}\right|=x+1\)
\(\Leftrightarrow\orbr{\begin{cases}\frac{2x-1}{3}=x+1\\\frac{2x-1}{3}=-x-1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}3x+3=2x-1\\-3x-3=2x-1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}3x-2x=-3-1\\-3x-2x=3-1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-4\\-5x=2\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-4\\x=-\frac{2}{5}\end{cases}}\)
\(\left|2x-\frac{1}{3}\right|=x+1\)
\(\Rightarrow\orbr{\begin{cases}2x-\frac{1}{3}=x+1\\2x-\frac{1}{3}=-x-1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\frac{1}{3}\\x=\frac{4}{9}\end{cases}}\)