Cmr: \(a=b=c\) biết \(a^2+b^2+c^2=ab=ac=bc\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(x=a^2-bc\Rightarrow ax=a^3-abc\); \(y=b^2-ac\Rightarrow by=b^3-abc\); \(z=c^2-ab\Rightarrow cz=c^3-abc\)
\(\Rightarrow ax+by+cz=a^3+b^3+c^3-3abc\)
Ta có : \(a^3+b^3+c^3-3abc=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2+2ab-ac-bc\right)-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(a^2-bc+b^2-ac+c^2-ab\right)=\left(a+b+c\right)\left(x+y+z\right)\)
Vậy : \(\left(x+y+z\right)\left(a+b+c\right)=ax+by+cz\)(đpcm)
Bạn lưu ý đề bài ở chỗ \(y^2=b^2-ac\)bạn ghi sai nhé, phải là \(y=b^2-ac\)
Bạn nhớ ghi thêm điều kiện x,y,z khác 0 nữa nhé :))
vì a;b;c là độ dài 3 cạnh của 1 tg
\(\Rightarrow\hept{\begin{cases}a+b>c\\a+c>b\\b+c>a\end{cases}\Rightarrow\hept{\begin{cases}ac+bc>c^2\\ab+bc>b^2\\ab+ca>a^2\end{cases}}}\)
\(\Rightarrow ab+bc+ac+ab+bc+ac>a^2+b^2+c^2\)
\(\Rightarrow a^2+b^2+c^2< 2\left(ab+bc+ac\right)\) (1)
có : \(\hept{\begin{cases}\left(a-b\right)^2\ge0\\\left(b-c\right)^2\ge0\\\left(c-a\right)^2\ge0\end{cases}\Rightarrow\hept{\begin{cases}a^2-2ab+b^2\ge0\\b^2-2bc+c^2\ge0\\c^2-2ac+a^2\ge0\end{cases}\Rightarrow}\hept{\begin{cases}a^2+b^2\ge2ab\\b^2+c^2\ge2bc\\c^2+a^2\ge2ac\end{cases}}}\)
\(\Rightarrow2ab+2bc+2ac\le2a^2+2b^2+2c^2\)
\(\Rightarrow ab+bc+ac\le a^2+b^2+c^2\) (2)
\(\left(1\right)\left(2\right)\Rightarrow ab+bc+ac\le a^2+b^2+c^2< 2\left(ab+bc+ac\right)\)
dễ
Ta có :
ab - ac + bc - c2 = -1
\(\Leftrightarrow\)a . ( b - c ) + c . ( b - c ) = -1
\(\Leftrightarrow\)( b - c ) . ( a + c ) = -1
\(\Leftrightarrow\)b - c và a + c phải khác dấu tức là b - c = - ( a + c )
\(\Leftrightarrow\)b - c = -a - c
\(\Leftrightarrow\)b = -a
Vậy a và b là hai số đối nhau