Tìm cặp số nguyên x:y:
xy+3x-y=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xy - 3x - y = 0
<=> x(y - 3) - y + 3 = 3
<=> (x - 1)(y - 3) = 3 (*)
Vì 3 là số nguyên tố nên chỉ có ước là 1 và 3
từ (*) ta có các trường hợp sau:
*TH1:
{x - 1 = -1 và {y - 3 = -3 => x = 0 và y = 0
*TH2:
{x - 1 = 1 và {y - 3 = 3 => x = 2 và y = 6
vậy (x,y) thuộc vào (0,0) và (2,6)
đưa x ra ngoài ta có :y( x-1) - 3x=0 nên: y( x-1) - 3x-3=-3
suy ra : (x-1).(y-3)=-3
từ đó tìm được x,y
các bạn tìm giúp mình
\(y^2+2xy-3x-2=0\)
\(\Leftrightarrow\left(y^2+2xy+x^2\right)-\left(x^2+3x+2\right)=0\)
\(\Leftrightarrow\left(x+y\right)^2=\left(x+1\right)\left(x+2\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\x+2=0\end{matrix}\right.\)
Nếu \(x+1=0\) thì \(\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\).
Nếu \(x+2=0\) thì \(\left\{{}\begin{matrix}x=-2\\y=2\end{matrix}\right.\)
Thử lại, ta thấy thỏa mãn. Vậy ta tìm được các cặp số \(\left(x;y\right)\) thỏa mãn đề bài là \(\left(-1;1\right),\left(-2;2\right)\)
Sửa đề :
Tìm tất cả cặp số nguyên x, y thỏa mãn: y2+2xy−3x−2=0
Giải
Coi phương trình đã hco là phương trình bậc hai ẩn yy có tham số x.x.
Ta có: Δ=4x2+12x+8.Δ=4x2+12x+8.
Vì x, y∈Z⇒Δx, y∈Z⇒Δ phải là số chính phương.
⇒4x2+12x+8=k2⇔4x2+12x+9−k2=1⇔(2x+3)2−k2=1⇔(2x+3−k)(2x+3+k)=1⇔⎡⎢ ⎢ ⎢ ⎢⎣{2x+3−k=12x+3+k=1{2x+3−k=−12x+3+k=−1⇔⎡⎢ ⎢ ⎢ ⎢⎣{x=−1(tm)k=0{x=−2(tm)k=0.⇒4x2+12x+8=k2⇔4x2+12x+9−k2=1⇔(2x+3)2−k2=1⇔(2x+3−k)(2x+3+k)=1⇔[{2x+3−k=12x+3+k=1{2x+3−k=−12x+3+k=−1⇔[{x=−1(tm)k=0{x=−2(tm)k=0.
Với x=−1⇒(∗)⇔y2−2y+1=0⇔(y−1)2=0⇔y=1 (tm).x=−1⇒(∗)⇔y2−2y+1=0⇔(y−1)2=0⇔y=1 (tm).
Với x=−2⇒(∗)⇔y2−4y+4=0⇔(y−2)2=0⇔y=2 (tm).x=−2⇒(∗)⇔y2−4y+4=0⇔(y−2)2=0⇔y=2 (tm).
Vậy tập nghiệm của phương trình đã cho là: (x; y)={(−1; 1); (−2; 2)}.
Nó bị lỗi phông thông cảm
HT
xy-3x-y=0
=>x(y-3)-(y-3)=3
=>(x-1)(y-3)=3
=>x-1 và y-3 thuộc Ư(3)={1;-1;3;-3}
Ta có bảng:
x-1 | 1 | -1 | 3 | -3 |
y-3 | 3 | -3 | 1 | -1 |
x | 2 | 0 | 4 | -2 |
y | 6 | 0 | 4 | 2 |
Vậy các cặp (x;y) là (2;6);(0;0);(4;4);(-2;2)
pt <=> \(x\left(y+3\right)-\left(y+3\right)=-3\)
<=> \(\left(x-1\right)\left(y+3\right)=-3\)
=> x - 1; y - 3 đều là Ư (-3) \(\in\left\{1;-1;3;-3\right\}\)
=> TA LẬP ĐƯỢC BẢNG SAU:
VẬY (x;y) = {2;0} ; {0;-6} ; {4;-2} ; {-2;-4}.
Ta có : \(xy+3x-y=0\)
\(\Leftrightarrow x.\left(y+3\right)-\left(y+3\right)=-3\)
\(\Leftrightarrow\left(y+3\right)\left(x-1\right)=-3\)
\(\Leftrightarrow\left(y+3\right)\left(1-x\right)=3\)
Vì \(x,y\) nguyên nên \(y+3,1-x\) là các cặp ước của \(3\)
Ta có bảng sau :
Vậy \(\left(x;y\right)\in\left\{\left(-2,-4\right);\left(-2,4\right);\left(0,0\right);\left(-6,2\right)\right\}\)