K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2020

sin E = DF/EF = 3/4. Đặt DF = 3x; EF = 4x.

Theo định lý Pytago, ta có:

DE^2 + DF^2 = EF^2. => 5^2 + (3x)^2 = (4x)^2.

=> 25 + 9x^2 = 16x^2. => 25 = 7x^2. => x = Căn(25/7).

=> DF = 3.Căn(25/7) cm; EF = 4.Căn(25/7) cm.

a) Ta có: ΔDEF vuông tại D(gt)

nên \(\widehat{F}+\widehat{E}=90^0\)

hay \(\widehat{F}=30^0\)

Xét ΔDEF vuông tại D có 

\(DF=DE\cdot\tan60^0\)

\(=12\sqrt{3}\left(cm\right)\)

Xét ΔDEF vuông tại D có 

\(\sin\widehat{DFE}=\dfrac{DE}{FE}\)

\(\Leftrightarrow FE=12:\dfrac{1}{2}=24\left(cm\right)\)

b) Áp dụng định lí Pytago vào ΔDEF vuông tại D có 

\(FE^2=DE^2+DF^2\)

\(\Leftrightarrow FE^2=8^2+15^2=289\)

hay FE=17(cm)

Xét ΔDEF vuông tại D có

\(\sin\widehat{DFE}=\dfrac{DE}{EF}=\dfrac{15}{17}\)

\(\Leftrightarrow\widehat{DFE}\simeq62^0\)

\(\Leftrightarrow\widehat{DEF}=28^0\)

a: Xét ΔDEF có \(EF^2=DE^2+DF^2\)

nên ΔDEF vuông tại D

13 tháng 9 2015

1. Ta có : sin2anpha + cos2anpha=1

        => (0.6)2 + cos2anpha =1 

        => 0.36 + cos2anpha =  1

        => cos2anpha = 0.64

        =>cos anpha =0.8

 

 


 

30 tháng 4 2019

a)Xét\(\Delta DEF\)có:\(EF^2=DE^2+DF^2\)(Định lý Py-ta-go)

hay\(5^2=3^2+DF^2\)

\(\Rightarrow DF^2=5^2-3^2=25-9=16\)

\(\Rightarrow DF=\sqrt{16}=4\left(cm\right)\)

Ta có:\(DE=3cm\)

\(DF=4cm\)

\(EF=5cm\)

\(\Rightarrow DE< DF< EF\)hay\(3< 4< 5\)

b)Xét\(\Delta DEF\)\(\Delta DKF\)có:

\(DE=DK\)(\(D\)là trung điểm của\(EK\))

\(\widehat{EDF}=\widehat{KDF}\left(=90^o\right)\)

\(DF\)là cạnh chung

Do đó:\(\Delta DEF=\Delta DKF\)(c-g-c)

\(\Rightarrow EF=KF\)(2 cạnh t/ứ)

Xét\(\Delta KEF\)có:\(EF=KF\left(cmt\right)\)

Do đó:\(\Delta KEF\)cân tại\(F\)(Định nghĩa\(\Delta\)cân)

c)Ta có:\(DF\)cắt\(EK\)tại\(D\)là trung điểm của\(EK\Rightarrow DF\)là đg trung tuyến xuất phát từ đỉnh\(F\)của\(\Delta KEF\)

\(KI\)cắt\(EF\)tại\(I\)là trung điểm của\(EF\Rightarrow KI\)là đg trung tuyến xuất phát từ đỉnh\(K\)của\(\Delta KEF\)

Ta lại có:​\(DF\)cắt\(KI\)tại\(G\)

mà​\(DF\)​là đg trung tuyến xuất phát từ đỉnh\(F\)của\(\Delta KEF\)

\(KI\)là đg trung tuyến xuất phát từ đỉnh\(K\)của\(\Delta KEF\)

\(\Rightarrow G\)là trọng tâm của\(\Delta KEF\)

\(\Rightarrow GF=\frac{2}{3}DF\)(Định lí về TC của 3 đg trung tuyến của 1\(\Delta\))

\(=\frac{2}{3}.4=\frac{8}{3}\approx2,7\left(cm\right)\)

Vậy\(GF\approx2,7cm\)

25 tháng 1 2016

Làm ơn giúp mình đi mình đang cần gấp lắm

28 tháng 2 2016

de thoi

1. 55 do

2. bc=10

a: \(\widehat{E}=35^0\)

Xét ΔDEF có \(\widehat{E}< \widehat{F}< \widehat{D}\)

nên FD<DE<EF

b: Xét ΔEDH vuông tại D và ΔEKH vuông tại K có

EH chung

\(\widehat{DEH}=\widehat{KEH}\)

Do đó: ΔEDH=ΔEKH

Suy ra: HD=HK

hay ΔHDK cân tại H

25 tháng 2 2022

a: ˆE=350E^=350

Xét ΔDEF có ˆE<ˆF<ˆDE^<F^<D^

nên FD<DE<EF

b: Xét ΔEDH vuông tại D và ΔEKH vuông tại K có

EH chung

ˆDEH=ˆKEHDEH^=KEH^

Do đó: ΔEDH=ΔEKH

Suy ra: HD=HK

AH
Akai Haruma
Giáo viên
22 tháng 12 2022

Lời giải:
$EF=\sqrt{ED^2+DF^2}=\sqrt{5^2+12^2}=13$ (cm) theo định lý Pitago

$\sin E=\frac{DF}{EF}=\frac{12}{13}$

$\cos E=\frac{ED}{EF}=\frac{5}{13}$

$\tan E=\frac{DF}{ED}=\frac{12}{5}$

$\cot E=\frac{1}{\tan E}=\frac{5}{12}$

Vì $\widehat{E}, \widehat{F}$ là 2 góc phụ nhau nên:
$\sin F=\cos E=\frac{5}{13}$

$\cos F=\sin E=\frac{12}{13}$

$\tan F=\cot E=\frac{5}{12}$

$\cot F=\tan E=\frac{12}{5}$

a: DF=căn 13^2-5^2=12cm

b: DE<DF

=>góc DFE<góc DEF

c: Xét ΔFDN vuông tại D và ΔFHN vuông tại H có

FN chung

góc DFN=góc HFN

=>ΔFDN=ΔFHN

=>ND=NH

Xét ΔNDK vuông tại D và ΔNHE vuông tại H có

ND=NH

góc DNK=góc HNE

=>ΔNDK=ΔNHE

=>KN=EN

10 tháng 5 2018

Áp dụng định lí py - ta - go , ta có :

     EF2 = ED2+DF2 = 12+ 52

                              = 144 + 25 = 169

EF= √169 = 13 ( cm )

10 tháng 5 2018

Xét tam giác DEF vuông tại D

Có: \(DE^2+DF^2=EF^2\left(pitago\right)\)

Thay số\(12^2+5^2=EF^2\)

144+25=EF^2

EF^2=169

EF^2=13^2

=>EF=13

Chúc bn hok tốt