K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2020

Ta có : 32x + 2 = 9x + 3

=> 32x + 2 = 32(x + 3)

=> 32x + 2 = 32x + 6

=> 2x + 2 = 2x + 6

=> 0x = 4

=> x \(\in\varnothing\)

8 tháng 2 2021

\(3^{2x+2}=9^{x+3}\)

\(\Leftrightarrow9^{x+1}=9^{x+3}\)

\(\Rightarrow x+1=x+3\)

\(\Rightarrow0x=2\)

=> không tồn tại x

DT
20 tháng 10 2023

\(3^x=9^3.27^5=\left(3^2\right)^3.\left(3^3\right)^5\\ =>3^x=3^{2.3}.3^{3.5}\\ =>3^x=3^6.3^{15}=3^{6+15}=3^{21}\\ =>x=21\)

20 tháng 10 2023

3x=93x275

3x=(32)3x(33)5

3x=321

vậy x=321

30 tháng 1 2022

a) \(A=\dfrac{x+3}{x+2}=\dfrac{x-2+5}{x-2}=\dfrac{x-2}{x-2}+\dfrac{5}{x-2}=1+\dfrac{5}{x-2}\)

\(\Rightarrow5⋮x-2\Rightarrow x-2\inƯ\left(5\right)\)

\(Ư\left(5\right)=\left\{\pm1;\pm5\right\}\)

\(\Rightarrow\left[{}\begin{matrix}x-2=1\\x-2=-1\\x-2=5\\x-2=-5\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\x=1\\x=7\\x=-3\end{matrix}\right.\)

b) \(B=\dfrac{1-2x}{x+3}=\dfrac{-2x+1}{x+3}\)

\(B\in Z\Rightarrow-2x+1⋮x+3\)

\(\Rightarrow-2x-6+7⋮x+3\)

\(\Rightarrow-2\left(x+3\right)+7⋮x+3\)

\(\Rightarrow7⋮x+3\)

\(\Rightarrow x+3\inƯ\left(7\right)\)

\(Ư\left(7\right)=\left\{\pm1;\pm7\right\}\)

\(\Rightarrow\left[{}\begin{matrix}x+3=1\\x+3-1\\x+3=7\\x+3=-7\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-2\\x=-4\\x=4\\x=-10\end{matrix}\right.\)

 

30 tháng 1 2022

\(A=\dfrac{x+3}{x-2}=\dfrac{x-2+5}{x-2}=1+\dfrac{5}{x-2}\)

Để \(A\in Z\) thì \(x-2\inƯ\left(5\right)=\left\{1;-1;5;-5\right\}\)

\(\Rightarrow x\in\left\{3;1;7;-3\right\}\)

Vậy \(x\in\left\{3;1;7;-3\right\}\) thì \(A\in Z\)

\(B=\dfrac{1-2x}{x+3}=\dfrac{-2x-6+7}{x+3}=\dfrac{-2\left(x+3\right)-7}{x+3}=-2+\dfrac{-7}{x+3}\)

Để \(B\in Z\) thì \(x+3\inƯ\left(-7\right)=\left\{1;-1;7;-7\right\}\)

\(\Rightarrow x\in\left\{-2;-4;4;10\right\}\)

Vậy \(x\in\left\{-2;-4;4;10\right\}\) thì \(B\in Z\)

13 tháng 10 2023

\(A=\dfrac{x^2-2x+7}{x^2-2x+3}=1+\dfrac{4}{x^2-2x+3}=1+\dfrac{4}{\left(x-1\right)^2+2}\)

\(A\in Z\Leftrightarrow\)\(\left[\left(x-1\right)^2+2\right]\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)

\(\Rightarrow\left(x-1\right)^2+2=2\)

\(\Leftrightarrow x=0\)

1 tháng 7 2021

\(\left(x+4\right)^2-81=0\Leftrightarrow\left(x+4\right)^2-9^2=0\)

\(\Leftrightarrow\left(x+4+9\right)\times\left(x+4-9\right)=0\)

\(\Leftrightarrow\left(x+13\right)\times\left(x-5\right)=0\)

\(\left[{}\begin{matrix}x+13=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-13\\x=5\end{matrix}\right.\)

PT \(\Rightarrow2x^2+2x-3x-6=2x^2-x+4x-8-2\)

\(\Rightarrow-4x=-4\) \(\Leftrightarrow x=1\)

Vậy \(x=1\)

Ta có: \(2x\left(x+1\right)-3\left(x+2\right)=x\left(2x-1\right)+4\left(x-2\right)-2\)

\(\Leftrightarrow2x^2+2x-3x-6=2x^2-x+4x-8-2\)

\(\Leftrightarrow2x^2-x-6=2x^2+3x-10\)

\(\Leftrightarrow2x^2-x-6-2x^2-3x+10=0\)

\(\Leftrightarrow-4x+4=0\)

\(\Leftrightarrow-4x=-4\)

hay x=1

Vậy: x=1

 

a: \(B=\dfrac{3x\left(2x-3\right)-4\left(2x+3\right)-4x^2+23x+12}{\left(2x-3\right)\left(2x+3\right)}\cdot\dfrac{2x+3}{x+3}\)

\(=\dfrac{6x^2-9x-8x-12-4x^2+23x+12}{2x-3}\cdot\dfrac{1}{x+3}\)

\(=\dfrac{2x^2+6x}{\left(2x-3\right)}\cdot\dfrac{1}{x+3}=\dfrac{2x}{2x-3}\)

b: 2x^2+7x+3=0

=>(2x+3)(x+2)=0

=>x=-3/2(loại) hoặc x=-2(nhận)

Khi x=-2 thì \(A=\dfrac{2\cdot\left(-2\right)}{-2-3}=\dfrac{-4}{-7}=\dfrac{4}{7}\)

d: |B|<1

=>B>-1 và B<1

=>B+1>0 và B-1<0

=>\(\left\{{}\begin{matrix}\dfrac{2x+2x-3}{2x-3}>0\\\dfrac{2x-2x+3}{2x-3}< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-3< 0\\\dfrac{4x-3}{2x-3}>0\end{matrix}\right.\Leftrightarrow x< \dfrac{3}{4}\)

30 tháng 4 2023

CẢM ƠN BẠN NHA