K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2020

Đặt \(A=\frac{1}{21}+\frac{1}{22}+...+\frac{1}{60}\)

\(A=\left(\frac{20}{20.21}+\frac{21}{21.22}+..+\frac{39}{39.40}\right)+\left(\frac{40}{40.41}+\frac{41}{41.42}+...+\frac{59}{59.60}\right)\)

\(\Rightarrow A>20.\left(\frac{1}{20.21}+\frac{1}{21.22}+...+\frac{1}{39.40}\right)+40.\left(\frac{1}{40.41}+\frac{1}{41.42}+...+\frac{1}{59.60}\right)\)

\(A>20\cdot\left(\frac{1}{20}-\frac{1}{40}\right)+40\cdot\left(\frac{1}{40}-\frac{1}{60}\right)=\frac{5}{6}>\frac{11}{15}\)

Mặt khác : \(A< 40\cdot\left(\frac{1}{20.21}+\frac{1}{21.22}+...+\frac{1}{38.40}\right)+60\cdot\left(\frac{1}{40.41}+\frac{1}{41.42}+...+\frac{1}{59.60}\right)\)

\(A< 40\cdot\left(\frac{1}{20}-\frac{1}{40}\right)+60\cdot\left(\frac{1}{40}-\frac{1}{60}\right)=\frac{3}{2}\)

Vậy ....

19 tháng 5 2017

Đặt A=1/21+1/22+...+1/60=(1/21+1/22+...+1/40)+(1/41+1/42+...+1/60)

Ta có:1/21>1/40, 1/22>1/40,..., 1/39>1/40

=>1/21+1/226+...+1/40>1/40+1/40+...+1/40=1/40.20=1/2

         1/41>1/60, 1/42>1/60,...,1/59>1/60

=>1/41+1/42+...+1/60>1/60+1/60+...+1/60=1/60.20=1/3

=>1/21+1/22+...+1/60>1/2+1/3=5/6>11/15

=>A>11/15 (1)

Lại có: 1/21<1/20, 1/22<1/20,...,1/40<1/20

=>1/21+1/22+...+1/40<1/20+1/20+...+1/20=1/20.20=1

           1/41<1/40, 1/42<1/40,...,1/60<1/40

=>1/41+1/42+...+1/60<1/40+1/40+...+1/40=1/40.20=1/2

=>1/21+1/22+...+1/60<1+1/2=3/2

=>A<3/2 (2)

Từ (1) và (2)

=>11/15<A<3/2

=>11/15<1/21+1/22+...+1/60<3/2 (đpcm)

13 tháng 3 2018

Bạn Vũ Thị Nguyên Mai trả lời đúng rùi

11 tháng 8 2020

tách bất đẳng thức trên ta có \(\frac{1}{21}+\frac{1}{22}+\frac{1}{23}+...+\frac{1}{60}\)gọi biều thức này là A

ta có \(A=\frac{1}{21}+\frac{1}{22}+\frac{1}{23}+...+\frac{1}{60}\)

\(A=\left(\frac{20}{20.21}+\frac{21}{21.22}+\frac{22}{22.23}+...+\frac{39}{39.40}\right)+\left(\frac{40}{40.41}+\frac{41}{41.42}+...+\frac{59}{59.60}\right)\)

\(\Rightarrow A>20.\left(\frac{20}{20.21}+\frac{21}{21.22}+\frac{22}{22.23}+...+\frac{39}{39.40}\right)+40.\left(\frac{40}{40.41}+\frac{41}{41.42}+...+\frac{59}{59.60}\right)\)nhân vế trái vs 20 vế phải 40

\(\Rightarrow A>20.\left(\frac{1}{20}-\frac{1}{40}\right)+40.\left(\frac{1}{40}-\frac{1}{60}\right)\)

\(\Rightarrow A>\frac{5}{6}>\frac{11}{5}\left(1\right)\)

ta có \(A< 40.\left(\frac{20}{20.21}+\frac{21}{21.22}+\frac{22}{22.23}+...+\frac{39}{39.40}\right)+60.\left(\frac{40}{40.41}+\frac{41}{41.42}+...+\frac{59}{59.60}\right)\)

\(\Rightarrow A< 40.\left(\frac{1}{20}-\frac{1}{40}\right)+60.\left(\frac{1}{40}-\frac{1}{60}\right)\)

\(\Rightarrow A< \frac{3}{2}\left(2\right)\)

từ (1) và (2)

\(\Rightarrow\frac{11}{15}< A< \frac{3}{2}\)

\(\Rightarrow\frac{11}{15}< \text{​​}\text{​​}\frac{1}{21}+\frac{1}{22}+\frac{1}{23}+..+\frac{1}{60}< \frac{3}{2}\)(ĐPCM)

11 tháng 8 2020

Đáp án là mình chứng minh được.

Cho S = 1/21 + 1/22 + 1/23 +... + 1/60

S1=1/21 + 1/22 +..+ 1/40 (20 số hạng); S2= 1/41 + 1/42 +... + 1/60 (20 số hạng)

* Ta thấy: S> 1/40 x 20 = 1/2 (vì 1/40 = 1/40, 19 số hạng kia đều lớn hơn 1/40); S> 1/60 x 20 = 1/3

\(\Rightarrow\)S > 1/2 + 1/3 = 5/6 = 25/30 > 22/30 = 11/15

Vậy 1/21 + 1/22 + ... + 1/60 > 11/15

* Ta thấy: S1 < 1/21 x 20 = 20/21(vì 1/20 = 1/20, 19 số hạng còn lại đều bé hơn 1/21); S< 1/41 x 20 = 20/41

\(\Rightarrow\)S < 20/21 + 20/41 = 1240/861 < 3/2 (đoạn này thì bạn phải dùng máy tính chứ mik ko bt tính nhanh kiểu j)

Ta có đpcm

25 tháng 5 2020

b,A= \(\dfrac{11}{15}<\dfrac{1}{21}+\dfrac{1}{22}+\dfrac{1}{23}+...+\dfrac{1}{59}+\dfrac{1}{60}<\dfrac{3}{2}\)

\(=(\dfrac{1}{21}+\dfrac{1}{22}+\dfrac{1}{23}+....+\dfrac{1}{40})+(\dfrac{1}{41}+...+1...\)
\(=(\dfrac{20}{20.21}+\dfrac{21}{21.22}+...+\dfrac{39}{39.40})+(40/...\)
\(20(\dfrac{1}{20.21}+\dfrac{1}{21.22}+...\dfrac{1}{39.40})+40(\dfrac{1}{40}...\)
\(20(\dfrac{1}{20}-\dfrac{1}{40})+40(\dfrac{1}{40}-\dfrac{1}{60})>\dfrac{11}{15}\)
Lại có \(A<40(\dfrac{1}{20.21}+...\dfrac{1}{39.40})+60(\dfrac{1}{40.41}+...+...\)
\(=40(\dfrac{1}{20}-\dfrac{1}{40})+60(\dfrac{1}{40}-\dfrac{1}{60})<\dfrac{3}{2}\)

=> \(\dfrac{11}{15}<\dfrac{1}{21}+\dfrac{1}{22}+\dfrac{1}{23}+...+\dfrac{1}{59}+\dfrac{1}{60}<\dfrac{3}{2}\)

25 tháng 5 2020

a,\( \dfrac{1}{4}+ \dfrac{1}{16}+ \dfrac{1}{36}+ \dfrac{1}{64}+ \dfrac{1}{100}+ \dfrac{1}{144}+ \dfrac{1}{196}\)

= \( \dfrac{1}{4}+ \dfrac{1}{16}+ \dfrac{1}{36}+...+ \dfrac{1}{196} < \dfrac{1}{2^2-1}+ \dfrac{1}{4^2-1}+ \dfrac{1}{6^2-1}+...+ \dfrac{1}{14^2-1}\)

= \( \dfrac{1}{1.3}+ \dfrac{1}{3.5}+ \dfrac{1}{5.7}+...+ \dfrac{1}{13.15}\)

= \( \dfrac{1}{2}(1- \dfrac{1}{3}+ \dfrac{1}{3}- \dfrac{1}{5}+ \dfrac{1}{5}- \dfrac{1}{7}+ \dfrac{1}{7}-...- \dfrac{1}{13}+ \dfrac{1}{13}- \dfrac{1}{15})\)

= \( \dfrac{1}{2}(1- \dfrac{1}{15})< \dfrac{1}{2}\)

Vậy \( \dfrac{1}{4}+ \dfrac{1}{16}+ \dfrac{1}{36}+ \dfrac{1}{64}+ \dfrac{1}{100}+ \dfrac{1}{144}+ \dfrac{1}{196}\) \(<\dfrac{1}{2} \)

3 tháng 6 2018

Đặt \(C=\frac{1}{21}+\frac{1}{22}+....+\frac{1}{60}=\left(\frac{1}{21}+\frac{1}{22}+...+\frac{1}{40}\right)+\left(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{60}\right)\)

Ta có: \(\frac{1}{21}>\frac{1}{40};\frac{1}{22}>\frac{1}{40};....\frac{1}{39}>\frac{1}{40}\)

\(\Rightarrow\frac{1}{21}+\frac{1}{22}+....+\frac{1}{39}+\frac{1}{40}>\frac{1}{40}+\frac{1}{40}+...+\frac{1}{40}=\frac{1}{40}.20=\frac{1}{2}\) 

\(\frac{1}{41}>\frac{1}{60};\frac{1}{42}>\frac{1}{60};...\frac{1}{59}>\frac{1}{60}\)

 \(\Rightarrow\frac{1}{41}+\frac{1}{42}+...+\frac{1}{60}>\frac{1}{60}+\frac{1}{60}+...+\frac{1}{60}=\frac{1}{60}.20=\frac{1}{3}\)

\(\Rightarrow\frac{1}{21}+\frac{1}{22}+...+\frac{1}{60}>\frac{1}{2}+\frac{1}{3}=\frac{5}{6}>\frac{11}{15}\)

Vậy \(C>\frac{11}{15}\) (1)

Lại có: \(\frac{1}{21}< \frac{1}{20};\frac{1}{22}< \frac{1}{20};...\frac{1}{40}< \frac{1}{20}\)

\(\Rightarrow\frac{1}{21}+\frac{1}{22}+...+\frac{1}{40}< \frac{1}{20}+....+\frac{1}{20}=\frac{1}{20}.20=1\)

\(\frac{1}{41}< \frac{1}{40};\frac{1}{42}< \frac{1}{40};...\frac{1}{60}< \frac{1}{40}\)

\(\Rightarrow\frac{1}{41}+\frac{1}{42}+...+\frac{1}{60}< \frac{1}{40}+\frac{1}{40}+...+\frac{1}{40}=\frac{1}{40}.20=\frac{1}{2}\)

\(\Rightarrow\frac{1}{21}+\frac{1}{22}+...+\frac{1}{60}< \frac{1}{2}+1=\frac{3}{2}\)

Vậy \(C< \frac{3}{2}\) (2)

Từ (1) và (2) suy ra \(\frac{11}{15}< \frac{1}{21}+\frac{1}{22}+...+\frac{1}{60}< \frac{3}{2}\)