so sánh \(\sqrt{0,5}..........\sqrt{3}-2\)
giúp mình nha, ai đúng mình k cho
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta so sánh từng số hạng :
\(\frac{\sqrt{2}-\sqrt{1}}{1+2}=\frac{\left(\sqrt{2}-\sqrt{1}\right)\left(\sqrt{2}+\sqrt{1}\right)}{\left(1+2\right)\left(\sqrt{2}+\sqrt{1}\right)}=\frac{1}{\left(1+2\right)\left(\sqrt{2}+\sqrt{1}\right)}< \frac{1}{2}\)
\(\frac{\sqrt{3}-\sqrt{2}}{2+3}=\frac{\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right)}{\left(2+3\right)\left(\sqrt{3}+\sqrt{2}\right)}=\frac{1}{\left(2+3\right)\left(\sqrt{2}+\sqrt{3}\right)}< \frac{1}{2}\)
..........................................................................................................................................................................................
\(\frac{\sqrt{2015}-\sqrt{2014}}{2014+2015}=\frac{\left(\sqrt{2015}-\sqrt{2014}\right)\left(\sqrt{2015}+\sqrt{2014}\right)}{\left(2014+2015\right)\left(\sqrt{2015}+\sqrt{2014}\right)}=\frac{1}{\left(2014+2015\right)\left(\sqrt{2015}+\sqrt{2015}\right)}< \frac{1}{2}\)
Vì mỗi số hạng của M đều nhỏ hơn 1/2 nên M < 1/2
Bài này mình làm chưa đúng nhé :) Để lát mình làm cách khác.
Ta có:
\(\frac{\sqrt{n+1}-\sqrt{n}}{n\left(n+1\right)}=\frac{\sqrt{n+1}-\sqrt{n}}{2n+1}\)\(=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{4n^2+4n+1}}\)
\(< \frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{4n^2+4n}}=\frac{\sqrt{n+1}-\sqrt{n}}{2\sqrt{n\left(n+1\right)}}\)\(=\frac{1}{2}\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)
Áp dụng vào bài toán ta có:
\(M< \frac{1}{2}\left(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2015}}\right)\)\(=\frac{1}{2}\left(1-\frac{1}{\sqrt{2015}}\right)\)
ta có : căn bậc của 4 lớn hơn căn bậc của 3
hay 2 lớn hơn căn bậc hai của 3
nên căn bậc hai của 3 trừ 2 ra kết quả âm
mà căn bậc của 0,5 là kết quả dương
vậy căn bậc của 0,5 > căn bậc của căn bậc hai của 3 trừ 2
ráng đọc tí nghen, mình ko biết cách viết căn bậc ra sao