x3 – 2x2 + x – 2 =0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(x^3-2x^2-x+2=0\)
\(\Leftrightarrow x^2\left(x-2\right)-\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=1\\x=-1\end{matrix}\right.\)
câu 4: b, đề bài là tính giá trị của A tại x =-1/2;y=-1
Tk
Bài 2
a) F(x)-G(x)+H(x)= \(x^3-2x^2+3x+1-\left(x^3+x-1\right)+\left(2x^2-1\right)\)
= \(x^3-2x^2+3x+1-x^3-x+1+2x^2-1\)
= \(x^3-x^3-2x^2+2x^2+3x-x+1+1-1\)
= 2x + 1
b) 2x + 1 = 0
2x = -1
x=\(\dfrac{-1}{2}\)
`P(x)=\(4x^2+x^3-2x+3-x-x^3+3x-2x^2\)
`= (x^3-x^3)+(4x^2-2x^2)+(-2x-x+3x)+3`
`= 2x^2+3`
`Q(x)=`\(3x^2-3x+2-x^3+2x-x^2\)
`= -x^3+(3x^2-x^2)+(-3x+2x)+2`
`= -x^3+2x^2-x+2`
`P(x)-Q(x)-R(x)=0`
`-> P(X)-Q(x)=R(x)`
`-> R(x)=P(x)-Q(x)`
`-> R(x)=(2x^2+3)-(-x^3+2x^2-x+2)`
`-> R(x)=2x^2+3+x^3-2x^2+x-2`
`= x^3+(2x^2-2x^2)+x+(3-2)`
`= x^3+x+1`
`@`\(\text{dn inactive.}\)
a: P(x)-Q(x)-R(x)=0
=>R(x)=P(x)-Q(x)
=2x^2+3+x^3-2x^2+x-2
=x^3+x+1
a) \(f\left(x\right)-g\left(x\right)\) hay \(x^3-2x^2+3x+1-x^3-x+1=-2x^2+2x+2\)
b) \(f\left(x\right)-g\left(x\right)+h\left(x\right)=0\) hay \(-2x^2+2x+2+2x^2-1=2x+1\Rightarrow2x+1=0\Rightarrow x=-\dfrac{1}{2}\)
`a,f(x)-g(x)+h(x)`
`=x^3-2x^2+3x+1-(x^3+x-1)+2x^2-1`
`=(x^3-x^3)+(2x^2-2x^2)+3x+1+1-1`
`=0+0+3x+1`
`=3x+1`
`b,f(x)-g(x)+h(x)=0`
`=>3x+1=0`
`=>x=-1/3`
\(\text{a)}f\left(x\right)-g\left(x\right)+h\left(x\right)=\left(x^3-2x^2+3x+1\right)-\left(x^3+x-1\right)+\left(2x^2-1\right)\)
\(=x^3-2x^2+3x+1-x^3-x+1+2x^2-1\)
\(=\left(x^3-x^3\right)+\left(-2x^2+2x^2\right)+\left(3x-x\right)+\left(1+1-1\right)\)
\(=2x+1\)
\(\text{b)Vì f(x)-g(x)+h(x)=0}\)
\(\Rightarrow2x+1=0\)
\(\Rightarrow2x\) \(=0-1=-1\)
\(\Rightarrow\) \(x\) \(=\left(-1\right):2=\dfrac{-1}{2}\)
\(\text{Vậy x=}\dfrac{-1}{2}\text{ thì f(x)-g(x)+h(x)=0}\)
a: \(f\left(x\right)-g\left(x\right)+h\left(x\right)\)
\(=2x^3-2x^2+4x+2x^2-1=2x^3+4x-1\)
b: f(x)-g(x)+h(x)=0
\(\Leftrightarrow2x^3+4x-1=0\)
\(\Leftrightarrow x\simeq0,2428\)
\(\left(x+2\right)\left(x^2-2x+4\right)-\left(x^3+2x^2\right)=0\\ \Rightarrow x^3+8-x^3-2x^2=0\\ \Rightarrow-2x^2+8=0\Rightarrow x^2=4\Rightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\\ \left(x-1\right)^3+\left(2-x\right)\left(4+2x+x^2\right)+3x\left(x+2\right)=17\\ \Rightarrow x^3-3x^2+3x-1+8-x^3+3x^2+6x=17\\ \Rightarrow9x=10\\ \Rightarrow x=\dfrac{10}{9}\)
\(\left(x+2\right)\left(x^2-2x+4\right)-\left(x^3+2x^2\right)=0\)
\(x^3+2^3-x^3-2x^2=0\)
\(2\left(4-x^2\right)=0\)
\(4-x^2=0\)
\(x^2=4\)
⇒\(\left[{}\begin{matrix}x^2=\left(-2\right)^2\\x^2=2^2\end{matrix}\right.\)
⇒\(\left[{}\begin{matrix}x=-2\\x=2\end{matrix}\right.\)
\(x^3-2x^2+x-2=x^2\left(x-2\right)+\left(x-2\right)=\left(x-2\right)\left(x^2+1\right)\)
\(=\left(x-2\right)\left(x^2+1\right)\)