K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 12 2015

\(\frac{4}{x}=\frac{7}{y}=\frac{12}{z}=>\frac{8}{2x}=\frac{21}{3y}=\frac{48}{4z}=\frac{8+21+48}{1925}=\frac{77}{1925}=\frac{1}{25}\)

=>4/x=1/25=>x=100

=>7/y=1/25=>y=175

=>12/z=1/25=>z=300

8 tháng 8 2015

a) x/-3=y/-7=2x/-6=4y/-28=2x+4y/(-6)+(-28)= 68/-34=-2

Vậy x/-3 = -2 => x=(-2)x(-3)=6

       y/-7= -2 => y=(-2)x(-7)=14

      nhớ chọn nhé

1 tháng 7 2016

\(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}=\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}=\frac{x+y+z}{\frac{3}{2}+\frac{4}{3}+\frac{5}{4}}=\frac{49}{\frac{49}{12}}\)= 12

=> x = 12.3 : 2 = 18 ; y = 12.4 : 3 = 16 ; z = 12.5 : 4 = 15

1 tháng 7 2016

đúng kết quả nhưng cách làm 

b) Ta có: 7x=10y=12z

nên \(\dfrac{x}{\dfrac{1}{7}}=\dfrac{y}{\dfrac{1}{10}}=\dfrac{z}{\dfrac{1}{12}}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{\dfrac{1}{7}}=\dfrac{y}{\dfrac{1}{10}}=\dfrac{z}{\dfrac{1}{12}}=\dfrac{x+y+z}{\dfrac{1}{7}+\dfrac{1}{10}+\dfrac{1}{12}}=\dfrac{685}{\dfrac{137}{420}}=2100\)

Do đó:

\(\left\{{}\begin{matrix}x=2100\cdot\dfrac{1}{2}=1050\\y=2100\cdot\dfrac{1}{10}=210\\z=2100\cdot\dfrac{1}{12}=175\end{matrix}\right.\)

12 tháng 12 2015

\(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}=\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}=\frac{x+y+z}{\frac{3}{2}+\frac{4}{3}+\frac{5}{4}}=\frac{49}{\frac{49}{12}}=12\)

\(x=\frac{3}{2}.12=18\)

\(y=\frac{4}{3}.12=16\)

\(z=\frac{5}{4}.12=15\)

15 tháng 10 2019

a) Ta có: 3x  = 2y => \(\frac{x}{2}=\frac{y}{3}\) => \(\frac{x}{10}=\frac{y}{15}\)

           7y = 5z => \(\frac{y}{5}=\frac{z}{7}\) => \(\frac{y}{15}=\frac{z}{21}\)

=> \(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)

Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

     \(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)

=> \(\hept{\begin{cases}\frac{x}{10}=2\\\frac{y}{15}=2\\\frac{z}{21}=2\end{cases}}\) => \(\hept{\begin{cases}x=2.10=20\\y=2.15=30\\z=2.21=42\end{cases}}\)

Vậy ...

b) Tương tự câu trên

c) Ta có:  \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\) => \(\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}\)

Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

   \(\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}=\frac{x+y+z}{\frac{3}{2}+\frac{4}{3}+\frac{5}{4}}=\frac{49}{\frac{49}{12}}=12\)

=> \(\hept{\begin{cases}\frac{x}{\frac{3}{2}}=12\\\frac{y}{\frac{4}{3}}=12\\\frac{z}{\frac{5}{4}}=12\end{cases}}\) => \(\hept{\begin{cases}x=12\cdot\frac{3}{2}=18\\y=12\cdot\frac{4}{3}=16\\z=12\cdot\frac{5}{4}=15\end{cases}}\)

Vậy ....

d) HD : Ta có: \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\) => \(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}\)

(Sau đó áp dụng t/c của dãy tỉ số bằng nhau rồi làm tương tự như trên)

e) HD: Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\) => x = 2k; y = 3k; z = 5k (*)

Thay x = 2k; y = 3k ; z = 5k vào xyz = 810 => tìm k => thay k ngược lại vào (*)

Nếu ko hiểu cứ hỏi t

22 tháng 11 2020

b,Sửa đề :  \(\frac{x}{3}=\frac{y}{4};\frac{y}{2}=\frac{z}{5}\)\(2x-3y+z=6\)

Ta có : \(\frac{x}{3}=\frac{y}{4}\Leftrightarrow\frac{x}{6}=\frac{y}{8}\)(*)

\(\frac{y}{2}=\frac{z}{5}\Leftrightarrow\frac{y}{8}=\frac{z}{20}\)(**)

Từ (*);(**) \(\Rightarrow\frac{x}{6}=\frac{y}{8}=\frac{z}{20}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{x}{6}=\frac{y}{8}=\frac{z}{20}=\frac{2x-3y+z}{2.6-3.8+20}=\frac{49}{8}\)

\(x=36,75;y=49;z=122,5\)

11 tháng 1 2024

sai rồi chó

11 tháng 1 2024

địt mẹ mày

20 tháng 11 2021

Với các bài khá nâng cao như vậy bạn đăng tách ra nhé!

Answer:

a) Ta có: \(x:y:z=3:4:5\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)

Ta đặt: \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=k\left(k\inℕ^∗\right)\)

\(\Rightarrow\hept{\begin{cases}x=3k\\y=4k\\z=5k\end{cases}}\)

Ta có: \(5z^2-3x^2-2y^2=594\)

\(\Rightarrow5.\left(5k\right)^2-3.\left(3k\right)^2-2.\left(4k\right)^2=594\)

\(\Rightarrow5.5^2k^2-3.3^2k^2-2.4^2k^2=594\)

\(\Rightarrow5.25k^2-3.9k^2-2.16.k^2=594\)

\(\Rightarrow125k^2-27k^2-32k^2=594\)

\(\Rightarrow k^2.\left(125-27-32\right)=594\)

\(\Rightarrow k^2.66=594\)

\(\Rightarrow k^2=9\)

\(\Rightarrow k=\pm3\)

Với \(k=3\Rightarrow\hept{\begin{cases}x=3.3=9\\y=3.4=12\\z=3.5=15\end{cases}}\)

Với \(k=-3\Rightarrow\hept{\begin{cases}x=\left(-3\right).3=-9\\y=\left(-4\right).3=-12\\z=\left(-5\right).3=-15\end{cases}}\)

20 tháng 11 2021

Answer:

b) \(3.\left(x-1\right)=2.\left(y-2\right)\Rightarrow6.\left(x-1\right)=4.\left(y-2\right)\)

Mà: \(4.\left(y-2\right)=3.\left(z-3\right)\)

\(\Rightarrow6.\left(x-1\right)=4.\left(y-2\right)=3.\left(z-3\right)\)

\(\Rightarrow\frac{6.\left(x-1\right)}{12}=\frac{4.\left(y-2\right)}{12}=\frac{3.\left(z-3\right)}{12}\Rightarrow\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)

Áp dụng tính chất của dãy tỉ số bằng nhau:

\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{2x-2}{4}=\frac{3y-6}{9}==\frac{\left(2x-2\right)+\left(3y-6\right)-z}{4+9-4}=\frac{2x-2+3y-6-z}{9}=\frac{\left(2x+3y-z\right)-\left(2+6\right)}{9}=\frac{50-8}{9}=\frac{14}{3}\)

\(\Rightarrow\hept{\begin{cases}x-1=2.\frac{14}{3}=\frac{28}{3}\\y-2=3.\frac{14}{3}=14\\z-3=4.\frac{14}{3}=\frac{56}{3}\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{31}{3}\\y=16\\z=\frac{68}{3}\end{cases}}\)

c) \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\Rightarrow\frac{2x}{3.12}=\frac{3y}{4.12}=\frac{4z}{5.12}\Rightarrow\frac{x}{18}=\frac{y}{16}=\frac{z}{15}\)

Áp dụng tính chất của dãy tỉ số bằng nhau

\(\frac{x}{18}=\frac{y}{16}=\frac{z}{15}=\frac{x+y-z}{18+16-15}=\frac{38}{19}=2\)

\(\Rightarrow\frac{x}{18}=2\Rightarrow x=18.2=36\)

\(\Rightarrow\frac{y}{16}=2\Rightarrow y=16.2=32\)

\(\Rightarrow\frac{z}{15}=2\Rightarrow z=15.2=30\)

9 tháng 8 2019

Từ x/3=y/5=z/7.áp dụng tính chất dãy tỉ số bằng nhau

 Đc:  x/3=y/5=z/7=(2x-3y+4x)/(6-15+28)=48/19

=>x=48/19*2=144/19

=>y=48/19*5=240/19

=>z=48/19*7=336/19

  study well

  k nha

 ai k đúng cho mk mk trả lại gấp dôi

   ai ghé qua xin hãy để lại 1 k

Áp dụng tính chất của dãy tie số bằng nhau ta có :

 \(\frac{x}{3}=\frac{y}{5}=\frac{z}{7}=\frac{2x}{6}=\frac{3y}{15}=\frac{4z}{28}=\frac{2x-3y+4x}{6-15+28}=\frac{48}{19}\)

Từ \(\frac{2x}{6}=\frac{48}{19}\Rightarrow x=\frac{144}{19}\)

\(\frac{3y}{15}=\frac{48}{19}\Rightarrow x=\frac{240}{19}\)

\(\frac{4z}{28}=\frac{48}{19}\Rightarrow z=\frac{336}{19}\)

Study well