K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2021

Vì n là số lẻ nên n có dạng \(2k+1\left(k\inℕ\right)\)

Ta được : 

\(\left(2k+1\right)^2+4\left(2k+1\right)+3\)

\(=4k^2+4k+1+8k+4+3\)

\(=4k^2+12k+8\)

\(=4\left(k+1\right)\left(k+2\right)\)

Do \(\left(k+1\right)\left(k+2\right)\)là 2 stn liên tiếp

\(\Rightarrow\left(k+1\right)\left(k+2\right)⋮2\)

\(\Leftrightarrow\left(k+1\right)\left(k+2\right)=2a\)( a thuộc N* ) 

\(\Leftrightarrow n^2+4n+3=8a⋮8\)

NV
18 tháng 9 2021

a. 

Đề bài sai, ví dụ \(n=1\) lẻ nhưng  \(1^2+4.1+8=13\) ko chia hết cho 8

b.

n lẻ \(\Rightarrow n=2k+1\)

\(n^3+3n^2-n-3=n^2\left(n+3\right)-\left(n+3\right)=\left(n^2-1\right)\left(n+3\right)=\left(n-1\right)\left(n+1\right)\left(n+3\right)\)

\(=\left(2k+1-1\right)\left(2k+1+1\right)\left(2k+1+3\right)\)

\(=8k\left(k+1\right)\left(k+2\right)\)

Do \(k\left(k+1\right)\left(k+2\right)\) là tích 3 số tự nhiên liên tiếp nên chia hết cho 6

\(\Rightarrow8k\left(k+1\right)\left(k+2\right)\) chia hết cho 48

17 tháng 5 2016

chia hết cho 8,hay bội số cua 8. 
Đặt n=2k+1 với k thuộc Z 
A=(2k+1)^2+4(2k+1)+5=4k^2+12k+10= 
(2k+3)^2+1 
ta biết 1 số bình phương chia cho 8 thì dư 1 hoặc 3(bạn nên chứng minh thêm bài toán phụ này) 
khi đó A chia 8 sẽ dư 2 hoăc 4,suy ra đpcm

27 tháng 7 2018

\(n^2+4n+3\)

\(=n^2+n+3n+3\)

\(=n\left(n+1\right)+3\left(n+1\right)\)

\(=\left(n+3\right)\left(n+1\right)\)

Vì n lẻ => n + 3 chẵn ; n + 1 chẵn

Mà n + 1 hoặc n + 3 chia hết cho 2 vì 2 số đều chẵn(1)

Lại có (n + 1)(n + 3) chia hết cho 4 vì đây là tích của 2 số chẵn liên tiếp(2)

Từ (1) và (2) \(\Rightarrow\left(n+1\right)\left(n+3\right)⋮\left(2.4\right)=8\)

Vậy \(n^2+4n+3⋮8\)<=> n lẻ

27 tháng 7 2018

ta có n\(^2\)+4n+3

=n\(^2\)+n+3n+3

=n(n+1)+3(n+1)

=(n+3)(n+1)

Vì n lẻ => n + 3 chẵn ; n + 1 chẵn

Mà n + 1 hoặc n + 3 chia hết cho 2 vì 2 số đều chẵn(1)

Lại có (n + 1)(n + 3) chia hết cho 4 vì đây là tích của 2 số chẵn liên tiếp(2)

Từ (1) và (2) ⇒(n+1)(n+3)⋮(2.4)=8

Vậy n\(^2\)+4n+3⋮8<=> n lẻ

21 tháng 7 2016

có n2+4n+3=(n+1)(n+3) mà n lẻ suy ra n2+4n+3 là tích 2 số chẵn liên tiếp

mà hai số chẵn liên tiếp thì sẽ có 1 số chia hết cho 2 và 1 số chia hết cho 4=>n2+4n+3chia hết cho 8

3 tháng 9 2019

\(n^2+4n+3=n^2+2.n.2+2^2-1\)

\(=\left(n+2\right)^2-1\)

\(=\left(n+2-1\right).\left(n+2+1\right)\)

\(=\left(n-1\right).\left(n+3\right)⋮8\)

3 tháng 9 2019

Ta có n2+4n+3=(n+1)(n+3)

Vì n là số lẻ nên (n+1)và (n+3) là hai số tự nhiên chẵn liên tiếp

Do đó một trong hai số có một số chia hết cho 4 khi đó số còn lại chia hết cho 2

Vậy tích (n+1)(n+3) chia hết cho 8 và ta có điều phải chứng minh

17 tháng 7 2018

Ta có : 

\(n^3+4n^2+n\) \(=n\left(n^2+4n+1\right)\)\(=n\left(n^2+n+3n+3\right)\)\(=n\left(n+1\right)\left(n+3\right)\)

Vì n và n+1 là 2 số tự nhiên liên tiếp => n(n+1) chia hết cho 2                   (1)

Vì n lẻ => n+1 và n+3 là 2 số chẵn liên tiếp => ( n+1 )( n+3 ) chia hết cho 4                  (2)

Từ (1) và (2) => n(n+1)(n+3) chia hết cho 8

hay \(n^3+4n^2+n⋮8\)

14 tháng 2 2016

bai toan nay kho quá