C=\(\frac{2020\cdot2022-20}{2020\cdot2021+2000}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ko khó đâu bn ơi
Đặt a/b=c/d=k
=> a=bk và c=dk
Xong thay vào (a^2020-b^2020)/(a^2020+b^2020)=(b^2020.k^2020-b^2020)/(b^2020.k^2020+b^2020)
= (k^2020-1)/(k^2020+1)
Tiếp tục thay vào (c^2020-d^2020)/(c^2020+d^2020)=(d^2020.k^2020-d^2020)/(d^2020.k^2020+d^2020)
= (k^2020-1)/(k^2020+1)
=> đpcm.
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: \(2020+c^2=ab+bc+ca+c^2=\left(b+c\right)\left(c+a\right)\)
Tương tự => \(2020+a^2=\left(a+b\right)\left(c+a\right)\)
và \(2020+b^2=\left(a+b\right)\left(b+c\right)\)
=> PT = \(\frac{a-b}{\left(b+c\right)\left(c+a\right)}+\frac{b-c}{\left(a+b\right)\left(c+a\right)}+\frac{c-a}{\left(a+b\right)\left(b+c\right)}\)
= \(\frac{\left(a-b\right)\left(a+b\right)+\left(b-c\right)\left(b+c\right)+\left(c-a\right)\left(c+a\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\) = \(\frac{a^2-b^2+b^2-c^2+c^2-a^2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\) = 0
![](https://rs.olm.vn/images/avt/0.png?1311)
2020 - 2000 + 1980 - 1960 +...+ 60 - 40 + 20 - 0
= (2020 - 2000) + (1980 - 1960) + ... + (60 - 40) + (20 - 0)
= 20 + 20 + 20 + ... + 20 + 20
= 20 * 505 = 10100
C=\(\frac{2020.2022-20}{2020.2021+2000}\)=\(\frac{2020.2021+2020-20}{2020.2021+2000}\)=\(\frac{2020.2021+2000}{2020.2021+2020}\)=\(1\)
\(C=\frac{2020\cdot2022-20}{2020\cdot2021+2000}=\frac{2020\cdot2021+2020-20}{2020\cdot2021+2000}=\frac{2020\cdot2021+2000}{2020\cdot2021+2000}=1\)