Tìm số tự nhiên n biết
1+2+...+n = 595
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ đề bài \(\Rightarrow205< n< 595\) (*)
\(2005-205=1800⋮n\)
\(1795-595=1200⋮n\)
=> n là ước chung của 1800 và 1200 thoả mãn (*)
Bạn tự tìm nhé
Xin lỗi!
\(n>595\)
mà UCLN(1800;1200)=600 => n=600
Bài 1:
Ta có dãy số 2, 4, 6, ..., 2n là một dãy số chẵn liên tiếp.
Ta có công thức tổng của dãy số chẵn liên tiếp là: S = (a1 + an) * n / 2
Với a1 là số đầu tiên của dãy, an là số cuối cùng của dãy, n là số phần tử của dãy.
Áp dụng công thức trên vào bài toán, ta có:
(2 + 2n) * n / 2 = 756
(2n + 2) * n = 1512
2n^2 + 2n = 1512
2n^2 + 2n - 1512 = 0
Giải phương trình trên, ta được n = 18 hoặc n = -19.
Vì n là số tự nhiên nên n = 18.
Vậy số tự nhiên n cần tìm là 18.
Bài 2:
Ta có p = (n - 2)(n^2 + n - 5)
Để p là số nguyên tố, ta có hai trường hợp:
1. n - 2 = 1 và n^2 + n - 5 = p
2. n - 2 = p và n^2 + n - 5 = 1
Xét trường hợp 1:
n - 2 = 1
=> n = 3
Thay n = 3 vào phương trình n^2 + n - 5 = p, ta có:
3^2 + 3 - 5 = p
9 + 3 - 5 = p
7 = p
Vậy n = 3 và p = 7 là một cặp số nguyên tố thỏa mãn.
Xét trường hợp 2:
n - 2 = p
=> n = p + 2
Thay n = p + 2 vào phương trình n^2 + n - 5 = 1, ta có:
(p + 2)^2 + (p + 2) - 5 = 1
p^2 + 4p + 4 + p + 2 - 5 = 1
p^2 + 5p + 1 = 1
p^2 + 5p = 0
p(p + 5) = 0
p = 0 hoặc p = -5
Vì p là số nguyên tố nên p không thể bằng 0 hoặc âm.
Vậy không có số tự nhiên n thỏa mãn trong trường hợp này.
Vậy số tự nhiên n cần tìm là 3.
Bài 1
...=((2n-2):2+1):2=756
(2(n-1):2+1)=756×2
n-1+1=1512
n=1512
BAI 1
ta co n+6 chia het cho n
ma n chia het cho n
suy ra 6 chia het cho n
ma n la mot so tu nhien nen
ta co n thuoc U(6)=1,2,3,6
vay n bang 1,2,3,6
bai 2
(2n-1).(y+3)=12
suy ra 2n-1 va y+3 thuoc uoc cua 12 =1,12,3,4,6,2
neu 2n-1 =1 suy ra n=1
thi y+3=12 suy ra y=9
neu 2n-1=12 suy ra n=11/2(ko thoa man )
neu 2n-1=3 suy ra n=2
thi y+3=4 suy ra y=1
neu 2n-1=4 ruy ra n=5/2( ko thoa man )
neu 2n-1=6 suy ra n=7/2( ko thoa man )
neu 2n-1=2 suy ra n=3/2 ( ko thoa man )
vay cac cap so n :y can tim la (2;1),(1;9)
1, \(\frac{n+3}{n+1}=\frac{n+1+2}{n+1}=1+\frac{2}{n+1}\)
Suy ra n+1 phải là Ư(2)={-2;-1;1;2}
\(\Rightarrow n=-3;-2;0;1\)
n² + 3n + 1
= n² + n + 2n + 2 - 1
= (n² + n) + (2n + 2) - 1
= n(n + 1) + 2(n + 1) - 1
Để (n² + 3n + 1) ⋮ (n + 1) thì 1 ⋮ (n + 1)
⇒ n + 1 ∈ Ư(1) = {1}
⇒ n = 0
Công thức tính tổng : (số cuối + số đầu) . số số hạng : 2
Áp dụng vào bài \(1+2+3+...+n=595\)
\(< =>\frac{\left(n+1\right).n}{2}=595\)
\(< =>\left(n+1\right)n=595.2=1190\)
\(< =>\left(n+1\right)n=35.34< =>n=34\)
Số số hạng là : \(\left(n-1\right):1+1=n\)
=> Tổng : \(\frac{\left(1+n\right)\cdot n}{2}=\frac{n^2+n}{2}=\frac{n\left(n+1\right)}{2}\)
=> \(\frac{n\left(n+1\right)}{2}=595\)
=> n(n + 1) = 1190 = 34.35
=> n= 34