CM: P < 1/16 biết P = 1/5^2 + 2/5^2 + 3/5^2 + ... + 11/5^2
Mong mn giúp mik vs ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\dfrac{2}{5}-\dfrac{1}{4}\right):\dfrac{3}{4}x\dfrac{5}{2}=\dfrac{3}{20}:\dfrac{3}{4}x\dfrac{5}{2}=\dfrac{3}{20}x\dfrac{4}{3}x\dfrac{5}{2}=\dfrac{3x4x5}{20x3x2}=\dfrac{1}{2}\)
`a)5/9:(1/11-5/22)+5/9:(1/15-2/3)`
`=5/9:(2/22-5/22)+5/9:(1/15-10/15)`
`=5/9:(-3)/22+5/9:(-9)/15`
`=5/9*(-22)/3+5/9*(-5)/3`
`=5/9*(-22/3+(-5)/3)`
`=5/9*(-9)=-5`
(16/7 + -11/3) + (6/5 + -2/7) + 37/15
mn giải giúp mik với ạ. Với có hc lazi ko ạ, ko thì mik sorry.
mik có hc lazi nè
link của của mik https://lazi.vn/user/bach.bach17
Ta có : \(A=\frac{1}{5^2}+\frac{2}{5^3}+...+\frac{n}{5^{n+1}}+...+\frac{11}{5^{12}}\)
=> \(5A=\frac{1}{5}+\frac{2}{5^2}+...+\frac{n}{5^n}+...+\frac{11}{5^{11}}\)
Lấy 5A trừ A theo vế ta có :
5A - A = \(\left(\frac{1}{5}+\frac{2}{5^2}+...+\frac{n}{5^n}+...+\frac{11}{5^{11}}\right)-\left(\frac{1}{5^2}+\frac{2}{5^3}+...+\frac{n}{5^{n+1}}+...+\frac{11}{5^{12}}\right)\)
4A = \(\left(\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{11}}\right)-\frac{11}{5^{12}}\)
Đặt B = \(\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{11}}\)
=> 5B = \(1+\frac{1}{5}+...+\frac{1}{5^{10}}\)
Lấy 5B trừ B ta có :
=> 5B - B = \(\left(1+\frac{1}{5}+...+\frac{1}{5^{10}}\right)-\left(\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{11}}\right)\)
=> 4B =\(1-\frac{1}{5^{11}}\)
=> B = \(\frac{1}{4}-\frac{1}{5^{11}.4}\)
Khi đó 4A = \(\frac{1}{4}-\frac{1}{5^{11}.4}-\frac{1}{5^{12}}\)
=> A = \(\frac{1}{16}-\left(\frac{1}{5^{11}.16}+\frac{1}{5^{12}.4}\right)< \frac{1}{16}\left(\text{ĐPCM}\right)\)
cậu ơi , mình quên không ghi 1 dữ liệu ạ
n thuộc N
V ậy có cần phải chỉnh sửa ở trong bài làm không ạ?????
\(\Rightarrow5H=\frac{1}{5}+\frac{2}{5^2}+...+\frac{11}{5^{11}}\)
\(\Rightarrow5H-H=\left(\frac{1}{5}+\frac{2}{5^2}+...+\frac{11}{5^{11}}\right)-\left(\frac{1}{5^2}+\frac{2}{5^3}+...+\frac{11}{5^{12}}\right)\)
\(\Rightarrow4H=\frac{1}{5}+\frac{1}{5^2}+..+\frac{1}{5^{11}}-\frac{11}{5^{12}}\)
Đặt \(A=\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{11}}\)
\(\Rightarrow5A=1+\frac{1}{5}+...+\frac{1}{5^{10}}\)
\(\Rightarrow5A-A=\left(1+..+\frac{1}{5^{10}}\right)-\left(\frac{1}{5}+...+\frac{1}{5^{11}}\right)\)
\(\Rightarrow4A=1-\frac{1}{5^{11}}\)
\(\Rightarrow A=\frac{1}{4}-\frac{1}{4.5^{11}}\)
\(\Rightarrow4H=\frac{1}{4}-\frac{1}{4.5^{11}}-\frac{11}{5^{12}}\)
\(\Rightarrow H=\frac{1}{16}-\frac{1}{4^2.5^{11}}-\frac{11}{4.5^{12}}\)
Ta có : \(5H=\frac{1}{5}+\frac{2}{5^2}+...+\frac{11}{5^{11}}\)
\(\Rightarrow4H=\left(\frac{1}{5}+\frac{2}{5^2}+...+\frac{11}{5^{11}}\right)-\left(\frac{1}{5^2}+\frac{2}{5^3}+...+\frac{11}{5^{12}}\right)=\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{11}}+\frac{11}{5^{12}}\)
\(\Rightarrow20H=1+\frac{1}{5}+...+\frac{1}{5^{10}}+\frac{11}{5^{11}}\)
\(\Rightarrow16H=20H-4H=1+\frac{10}{5^{11}}-\frac{11}{5^{12}}\Leftrightarrow H=\frac{1+\frac{10}{5^{11}}-\frac{11}{5^{12}}}{16}.\)
\(1)\frac{1}{5}+\frac{2}{11}< \frac{x}{55}< \frac{2}{5}+\frac{1}{55}\)
\(\Rightarrow\frac{11}{55}+\frac{10}{55}< \frac{x}{55}< \frac{22}{55}+\frac{1}{55}\)
\(\Rightarrow\frac{21}{55}< \frac{x}{55}< \frac{23}{55}\)
\(\Rightarrow21< x< 23\)
\(\Rightarrow x=22\)
\(2)\frac{11}{3}+\frac{-19}{6}+\frac{-15}{2}\le x\le\frac{19}{12}+\frac{-5}{4}+\frac{-10}{3}\)
\(\Rightarrow\frac{22}{6}+\frac{-19}{6}+\frac{-45}{6}\le x\le\frac{19}{12}+\frac{-15}{12}+\frac{-40}{12}\)
\(\Rightarrow\frac{22+\left[-19\right]+\left[-45\right]}{6}\le x\le\frac{19+\left[-15\right]+\left[-40\right]}{12}\)
\(=\frac{-42}{6}\le x\le\frac{-36}{12}\)
\(\Rightarrow-7\le x\le-3\)
\(\Rightarrow x\in\left\{-7;-6;-5;-4;-3\right\}\)
Sửa đề P = \(\frac{1}{5}+\frac{2}{5^2}+\frac{3}{5^3}+...+\frac{11}{5^{11}}\)CM P < 5/16
=> 5P = \(1+\frac{2}{5}+\frac{3}{5^2}+...+\frac{11}{5^{10}}\)
Lấy 5P trừ P theo vế ta có
5P - P = \(\left(1+\frac{2}{5}+\frac{3}{5^2}+...+\frac{11}{5^{10}}\right)-\left(\frac{1}{5}+\frac{2}{5^2}+\frac{3}{5^3}+...+\frac{11}{5^{11}}\right)\)
4P = \(1+\left(\frac{2}{5}-\frac{1}{5}\right)+\left(\frac{3}{5^2}-\frac{2}{5^2}\right)+...+\left(\frac{11}{5^{10}}-\frac{10}{5^{10}}\right)-\frac{11}{5^{11}}\)
4P = \(1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{10}}-\frac{11}{5^{11}}\)
Đặt Q = \(1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{10}}\)
=> 5Q \(=5+1+\frac{1}{5}+...+\frac{1}{5^9}\)
Lấy 5Q trừ Q theo vế ta có
5Q - Q = \(\left(5+1+\frac{1}{5}+...+\frac{1}{5^9}\right)-\left(1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{10}}\right)\)
4Q \(=5-\frac{1}{5^{10}}\)
=> Q\(=\frac{5}{4}-\frac{1}{5^{10}.4}\)
Khi đó 4P = \(\frac{5}{4}-\frac{1}{5^{10}.4}-\frac{11}{5^{11}}\)
=> P = \(\frac{5}{16}-\frac{1}{5^{10}.16}-\frac{11}{5^{11}.4}\)
\(=\frac{5}{16}-\frac{1}{5^{10}}\left(\frac{1}{16}-\frac{11}{5.4}\right)< \)\(\frac{5}{16}\)
Bài làm:
Ta có: \(\frac{1}{5^2}+\frac{2}{5^2}+\frac{3}{5^2}+...+\frac{11}{5^2}\)
\(=\frac{1+2+3+...+11}{5^2}=\frac{\left(1+11\right).11:2}{5^2}=\frac{66}{25}>1>\frac{1}{16}\)
\(\Rightarrow P>\frac{1}{16}\)
=> Đề sai