K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2021

câu 1

x=5

x=4

câu 2

x=2

x=-5

4 tháng 10 2017

a) \(x^2-4=0\)

\(\Rightarrow x^2-2^2=0\)

\(\Rightarrow\left(x-2\right)\left(x+2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-2=0\\x+2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)

b) \(x\left(x+5\right)=9x\)

\(\Rightarrow x^2+5x-9x=0\)

\(\Rightarrow x^2-4x=0\)

\(\Rightarrow x\left(x-4\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)

c) \(3x^3-48x=0\)

\(\Rightarrow3x\left(x^2-16\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x^2-16=0\Rightarrow\left(x-4\right)\left(x+4\right)=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x-4=0\\x+4=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=4\\x=-4\end{matrix}\right.\)

d) \(x^4+x^2-20=0\)

\(\Rightarrow\left(x^2\right)^2+x^2-20=0\)

Đặt x2 = a

\(\Rightarrow a^2+a-20=0\)

\(\Rightarrow a^2+5a-4a-20=0\)

\(\Rightarrow a\left(a+5\right)-4\left(a+5\right)=0\)

\(\Rightarrow\left(a-4\right)\left(a+5\right)=0\)

\(\Rightarrow\left(x^2-4\right)\left(x^2+5\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x^2-4=0\\x^2+5=0\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x^2=4\Rightarrow x=\pm2\\x^2=-5\Rightarrow x\in\varnothing\end{matrix}\right.\)

4 tháng 10 2017

d) x4 + x2 - 20 = 0

\(\Rightarrow\) x4 + x2 = 20

\(\Rightarrow\) x4 + x2 = 24 + 22

\(\Rightarrow\) x = 2

a: \(\Leftrightarrow2\sqrt{2x}-10\sqrt{2x}+21\sqrt{2x}=28\)

=>\(13\sqrt{2x}=28\)

=>căn 2x=28/13

=>2x=784/169

=>x=392/169

b: \(\Leftrightarrow2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)

=>2*căn x-5=4

=>căn x-5=2

=>x-5=4

=>x=9

c: =>\(\sqrt{x-2}\left(\sqrt{x+2}-1\right)=0\)

=>x-2=0 hoặc x+2=1

=>x=-1 hoặc x=2

`@` `\text {Ans}`

`\downarrow`

`c)`

`( 34 - 2x ) . ( 2x - 6 ) = 0`

`=>`\(\left[{}\begin{matrix}34-2x=0\\2x-6=0\end{matrix}\right.\)

`=>`\(\left[{}\begin{matrix}2x=34\\2x=6\end{matrix}\right.\)

`=>`\(\left[{}\begin{matrix}x=34\div2\\x=6\div2\end{matrix}\right.\)

`=>`\(\left[{}\begin{matrix}x=17\\x=3\end{matrix}\right.\)

Vậy, `x \in {17; 3}`

`d)`

`( 2019 - x ) . ( 3x - 12 ) =0` `?`

`=>`\(\left[{}\begin{matrix}2019-x=0\\3x-12=0\end{matrix}\right.\)

`=>`\(\left[{}\begin{matrix}x=2019-0\\3x=12\end{matrix}\right.\)

`=>`\(\left[{}\begin{matrix}x=2019\\x=12\div3\end{matrix}\right.\)

`=>`\(\left[{}\begin{matrix}x=2019\\x=4\end{matrix}\right.\)

Vậy, `x \in {2019; 4}`

`e) `

`57 . ( 9x - 27 ) = 0`

`=>`\(9x-27=0\div57\)

`=> 9x - 27 = 0`

`=> 9x = 27`

`=> x = 27 \div 9`

`=> x = 3`

Vậy, `x = 3`

`f)`

`25 + ( 15 - x ) = 30`

`=> 15 - x = 30 - 25`

`=> 15 - x = 5`

`=> x = 15 -5 `

`=> x = 10`

Vậy, `x = 10`

`g) `

`43 - ( 24 - x ) = 20`

`=> 24 - x = 43 - 20`

`=> 24 - x = 23`

`=> x = 24 - 23`

`=> x = 1`

Vậy, `x = 1`

`h) `

`2 . ( x - 5 ) - 17 = 25`

`=> 2 ( x - 5) = 25+17`

`=> 2 ( x - 5) = 42`

`=> x - 5 = 42 \div 2`

`=> x - 5 = 21`

`=> x = 21 + 5`

`=> x = 26`

Vậy, `x = 26`

`i)`

`3 . ( x + 7 ) - 15 = 27`

`=> 3(x + 7) = 27 + 15`

`=> 3(x + 7) = 42`

`=> x +7 = 42 \div 3`

`=> x + 7 = 14`

`=> x = 14 - 7`

`=> x = 7`

Vậy, `x = 7`

`j)`

`15 + 4 . ( x - 2 ) = 95`

`=> 4(x - 2) = 95 - 15`

`=> 4(x - 2) = 80`

`=> x - 2 = 80 \div 4`

`=> x - 2 = 20`

`=> x = 20 + 2`

`=> x = 22`

Vậy, `x = 22`

`k)`

`20 - ( x + 14 ) = 5`

`=> x + 14 = 20 - 5`

`=> x + 14 = 15`

`=> x = 15 - 14`

`=> x = 1`

Vậy, `x = 1`

`l) `

`14 + 3 . ( 5 - x ) = 27`

`=> 3(5 - x) = 27 - 14`

`=> 3(5 - x) = 13`

`=> 5 - x = 13 \div 3`

`=> 5 - x = 13/3`

`=> x = 5- 13/3`

`=> x = 2/3`

Vậy, `x = 2/3.`

`@` `\text {Kaizuu lv uuu}`

9 tháng 7 2023

nhanh mik tick cho nha

1 tháng 10 2016

a) \(x\left(x-5\right)-4x+20=0\)

\(\Leftrightarrow x\left(x-5\right)-4\left(x-5\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left(x-5\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x-4=0\\x-5=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=4\\x=5\end{array}\right.\)

b) \(x\left(x+6\right)-7x-42=0\)

\(\Leftrightarrow x\left(x+6\right)-7\left(x+6\right)=0\)

\(\Leftrightarrow\left(x+6\right)\left(x-7\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x+6=0\\x-7=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-6\\x=7\end{array}\right.\)

d) \(x^2-9x+8=0\)

\(\Leftrightarrow x^2-x-8x+8=0\)

\(\Leftrightarrow x\left(x-1\right)-8\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-8\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x-1=0\\x-8=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=1\\x=8\end{array}\right.\)

g) \(3x^2-5x+2=0\)

\(\Leftrightarrow3x^2-3x-2x+2=0\)

\(\Leftrightarrow3x\left(x-1\right)-2\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(3x-2\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x-1=0\\3x-2=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=1\\x=\frac{2}{3}\end{array}\right.\)

a) Ta có: \(x^2-9x+20=0\)

\(\Leftrightarrow x^2-5x-4x+20=0\)

\(\Leftrightarrow x\left(x-5\right)-4\left(x-5\right)=0\)

\(\Leftrightarrow\left(x-5\right)\left(x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=4\end{matrix}\right.\)

Vậy: x∈{4;5}

b) Ta có: \(x^3-4x^2+5x=0\)

\(\Leftrightarrow x\left(x^2-4x+5\right)=0\)(1)

Ta có: \(x^2-4x+5\)

\(=x^2-4x+4+1=\left(x-2\right)^2+1\)

Ta có: \(\left(x-2\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-2\right)^2+1\ge1>0\forall x\)

hay \(x^2-4x+5>0\forall x\)(2)

Từ (1) và (2) suy ra x=0

Vậy: x=0

c) Sửa đề: \(x^2-2x-15=0\)

Ta có: \(x^2-2x-15=0\)

\(\Leftrightarrow x^2+3x-5x-15=0\)

\(\Leftrightarrow x\left(x+3\right)-5\left(x+3\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x-5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=5\end{matrix}\right.\)

Vậy: x∈{-3;5}

d) Ta có: \(\left(x^2-1\right)^2=4x+1\)

\(\Leftrightarrow x^4-2x^2+1-4x-1=0\)

\(\Leftrightarrow x^4-2x^2-4x=0\)

\(\Leftrightarrow x\left(x^3-2x-4\right)=0\)

\(\Leftrightarrow x\left(x^3+2x^2+2x-2x^2-4x-4\right)=0\)

\(\Leftrightarrow x\cdot\left[x\left(x^2+2x+2\right)-2\left(x^2+2x+2\right)\right]=0\)

\(\Leftrightarrow x\cdot\left(x^2+2x+2\right)\cdot\left(x-2\right)=0\)(3)

Ta có: \(x^2+2x+2\)

\(=x^2+2x+1+1=\left(x+1\right)^2+1\)

Ta có: \(\left(x+1\right)^2\ge0\forall x\)

\(\Rightarrow\left(x+1\right)^2+1\ge1>0\forall x\)

hay \(x^2+2x+2>0\forall x\)(4)

Từ (3) và (4) suy ra

\(\left[{}\begin{matrix}x=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)

Vậy: x∈{0;2}

27 tháng 3 2020

cảm ơn bạn

8 tháng 7 2023

a) \(5\left(x-7\right)=0\)

\(\Rightarrow x-7=0\)

\(\Rightarrow x=7\)

b) \(25\left(x-4\right)=0\)

\(\Rightarrow x-4=0\)

\(\Rightarrow x=4\)

c) \(\left(34-2x\right)\left(2x-6\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}34-2x=0\\2x-6=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}2x=34\\2x=6\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=17\\x=3\end{matrix}\right.\)

d) \(\left(2019-x\right)\left(3x-12\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}2019-x=0\\3x-12=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=2019\\3x=12\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=2019\\x=\dfrac{12}{3}=4\end{matrix}\right.\)

e) \(57\left(9x-27\right)=0\)

\(\Rightarrow9x-27=0\)

\(\Rightarrow9\left(x-3\right)=0\)

\(\Rightarrow x-3=0\)

\(\Rightarrow x=3\)

8 tháng 7 2023

a) 5.(x-7)=0⇔x-7=0⇔x=7

b) 25(x-4)=0⇔x-4=0⇔x=4

c) (34-2x).(2x-6)=0

⇔ 34-2x=0 hoặc 2x-6=0

⇔2x=34 hoặc 2x=6

⇔ x=17 hoặc x=3

d) (2019-x).(3x-12)=0

⇔ 2019-x=0 hoặc 3x-12=0

⇔ x=2019 hoặc x=4

e) 57.(9x-27)=0

⇔ 9x-27=0

⇔ x=3

f) 25+(15-x)=30

⇔ 15-x=5

⇔ x=10

g) 43-(24-x)=20

⇔ 24-x=23

⇔ x=1

h) 2.(x-5)-17=25

⇔ 2(x-5)=42

⇔x-5=21

⇔ x=26

i) 3(x+7)-15=27

⇔ 3(x+7)=42

⇔ x+7=14

⇔ x=7

j) 15+4(x-2)=95

⇔ 4(x-2)=80

⇔ x-2=20

⇔ x=22

k) 20-(x+14)=5

⇔ x+14=15

⇔ x=1

l) 14+3(5-x)=27

⇔ 3(5-x)=13

⇔ 5-x=13/3

⇔ x=5-13/3

⇔ x=2/3

28 tháng 8 2023

\(a)ĐK:x\ge-1\\ \Leftrightarrow x+1=2\sqrt{x+1}\\ \Leftrightarrow x^2+2x+1=4x+4\\ \Leftrightarrow x^2+2x-4x+1-4=0\\ \Leftrightarrow x^2-2x-3=0\\ \Leftrightarrow\left[{}\begin{matrix}x=3\left(tm\right)\\x=-1\left(tm\right)\end{matrix}\right.\)

Vậy \(S=\left\{3;-1\right\}\)

\(b)ĐK:x\ge2\\ \Leftrightarrow2x-4=\sqrt{x-2}\\ \Leftrightarrow4x^2-16x+16=x-2\\ \Leftrightarrow4x^2-16x-x+16+2=0\\ \Leftrightarrow4x^2-17x+18=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{9}{4}\left(tm\right)\\x=2\left(tm\right)\end{matrix}\right.\)

Vậy \(S=\left\{\dfrac{9}{4};2\right\}\)

\(c)ĐK:x\ge3\\ \Leftrightarrow2\sqrt{9\left(x-3\right)}-\dfrac{1}{5}\sqrt{25\left(x-3\right)}-\dfrac{1}{7}\sqrt{49\left(x-3\right)}=20\\ \Leftrightarrow2.3\sqrt{x-3}-\dfrac{1}{5}\cdot5\sqrt{x-3}-\dfrac{1}{7}\cdot7\sqrt{x-3}=20\\ \Leftrightarrow6\sqrt{x-3}-\sqrt{x-3}-\sqrt{x-3}=20\\ \Leftrightarrow4\sqrt{x-3}=20\\ \Leftrightarrow\sqrt{x-3}=5\\ \Leftrightarrow x-3=25\\ \Leftrightarrow x=25+3\\ \Leftrightarrow x=28\left(tm\right)\)

Vậy \(S=\left\{28\right\}\)

loading...  loading...