Giá trị của x thoả mãn
(x−1)3=8 là
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Bài 1 : \(4\left(x-1\right)^2=x^2\Leftrightarrow4\left(x^2-2x+1\right)=x^2\)
\(\Leftrightarrow4x^2-8x+4-x^2=0\Leftrightarrow3x^2-8x+4=0\)
\(\Leftrightarrow\left(3x-2\right)\left(x-2\right)=0\Leftrightarrow x=\frac{2}{3};2\)
Áp dụng với trung bình cộng 2 số : \(\frac{\frac{2}{3}+2}{2}=\frac{8}{\frac{3}{2}}=\frac{4}{3}\)
Bài 2 : Đặt A = \(x^2-2x-3=x^2-2x+1-4=\left(x-1\right)^2-4\ge-4\)
Dấu ''='' xảy ra <=> x = 1
Vậy GTNN A là -4 <=> x = 1
Bài 3 : \(x^2-5x+4=x^2-4x-x+4=x\left(x-4\right)-\left(x-4\right)\)
\(\Leftrightarrow\left(x-1\right)\left(x-4\right)\Leftrightarrow x=1;4\)
Tổng các giá trị x là : \(1+4=5\)
3, Tổng các giá trị của x thỏa mãn:
\(x^2-5x+4=0\)
\(\Leftrightarrow x^2-4x-x+4=0\)
\(\Leftrightarrow x\left(x-4\right)-\left(x-4\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=4\\x=1\end{cases}}\)
Vậy tổng các giá trị x thỏa mãn phương trình: S = 4 + 1 = 5

Ta có : \(\dfrac{x-15}{8}< 76\) \(\Leftrightarrow\) \(\dfrac{x-7}{8}-\dfrac{8}{8}< 76\) ⇔ \(\dfrac{x-7}{8}-1< 76\) ⇔ \(\dfrac{x-7}{8}< 75\) ⇔ \(\dfrac{x-7}{600}< 1\) ⇔ \(x-7< 600\) \(\Leftrightarrow x< 607\)
Mà \(x\) đạt Giá Trị Lớn Nhất nên \(x=606\)
Vậy GTLN của \(x\) là 606
Tick giùm mình với nha^^

Ta có: \(\left|2x+3\right|+\left|2x-1\right|=\left|2x+3\right|+\left|1-2x\right|\ge\left|2x+3+1-2x\right|=4\)
=> \(\left|2x+3\right|+\left|2x-1\right|\ge4\)(1)
Ta lại có: \(\frac{8}{3\left(x+1\right)^2+2}\le\frac{8}{2}=4\)
=> \(\left|2x+3\right|+\left|2x-1\right|\ge4\) (2)
Từ (1); (2) : \(\left|2x+3\right|+\left|2x-1\right|=\frac{8}{3\left(x+1\right)^2+2}\)
<=> \(\hept{\begin{cases}\left(2x+3\right)\left(1-2x\right)\ge0\\\left(x+1\right)^2=0\end{cases}\Leftrightarrow x=-1}\)(TM)
Vậy:...

\(\Leftrightarrow4x-6=-2\Leftrightarrow4x-4=0\Leftrightarrow x=1\)