tìm x biết :
a) x+1/3=x+2/5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=\left(\dfrac{x}{x+3}-\dfrac{2}{x-3}+\dfrac{x^2-1}{9-x^2}\right):\left(2-\dfrac{x+5}{x+3}\right)\) (ĐK: \(x\ne\pm3\))
\(A=\left[\dfrac{x\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}-\dfrac{2\left(x+3\right)}{\left(x+3\right)\left(x-3\right)}-\dfrac{x^2-1}{\left(x+3\right)\left(x-3\right)}\right]:\left(2+\dfrac{x+5}{x+3}\right)\)
\(A=\dfrac{x^2-3x-2x-6-x^2+1}{\left(x+3\right)\left(x-3\right)}:\dfrac{2\left(x+3\right)-\left(x+5\right)}{x+3}\)
\(A=\dfrac{-5x-5}{\left(x+3\right)\left(x-3\right)}\cdot\dfrac{x+3}{x+1}\)
\(A=\dfrac{-5\left(x+1\right)\left(x+3\right)}{\left(x+3\right)\left(x-3\right)\left(x+1\right)}\)
\(A=\dfrac{-5}{x-3}\)
b) Ta có: \(\left|x\right|=1\)
TH1: \(\left|x\right|=-x\) với \(x< 0\)
Pt trở thành:
\(-x=1\) (ĐK: \(x< 0\))
\(\Leftrightarrow x=-1\left(tm\right)\)
Thay \(x=-1\) vào A ta có:
\(A=\dfrac{-5}{x-3}=\dfrac{-5}{-1-3}=\dfrac{5}{4}\)
TH2: \(\left|x\right|=x\) với \(x\ge0\)
Pt trở thành:
\(x=1\left(tm\right)\) (ĐK: \(x\ge0\))
Thay \(x=1\) vào A ta có:
\(A=\dfrac{-5}{x-3}=\dfrac{-5}{1-2}=\dfrac{5}{2}\)
c) \(A=\dfrac{1}{2}\) khi:
\(\dfrac{-5}{x-3}=\dfrac{1}{2}\)
\(\Leftrightarrow-10=x-3\)
\(\Leftrightarrow x=-10+3\)
\(\Leftrightarrow x=-7\left(tm\right)\)
d) \(A\) nguyên khi:
\(\dfrac{-5}{x-3}\) nguyên
\(\Rightarrow x-3\inƯ\left(-5\right)\)
\(\Rightarrow x\in\left\{8;-2;2;4\right\}\)
a: \(A=\left(\dfrac{x}{x+3}-\dfrac{2}{x-3}+\dfrac{x^2-1}{9-x^2}\right):\left(2-\dfrac{x+5}{x+3}\right)\)
\(=\dfrac{x\left(x-3\right)-2\left(x+3\right)-x^2+1}{\left(x-3\right)\left(x+3\right)}:\dfrac{2x+6-x-5}{x+3}\)
\(=\dfrac{x^2-3x-2x-6-x^2+1}{\left(x-3\right)\left(x+3\right)}\cdot\dfrac{x+3}{x+1}\)
\(=\dfrac{-5x-5}{\left(x-3\right)}\cdot\dfrac{1}{x+1}=\dfrac{-5}{x-3}\)
b: |x|=1
=>x=-1(loại) hoặc x=1(nhận)
Khi x=1 thì \(A=\dfrac{-5}{1-3}=-\dfrac{5}{-2}=\dfrac{5}{2}\)
c: A=1/2
=>x-3=-10
=>x=-7
d: A nguyên
=>-5 chia hết cho x-3
=>x-3 thuộc {1;-1;5;-5}
=>x thuộc {4;2;8;-2}
1
\(\left(x-2\right):2.3=6\)
\(\Leftrightarrow\left(x-2\right):2=2\)
\(\Leftrightarrow\left(x-2\right)=4\)
\(\Leftrightarrow x=4+2=6\)
c) ta có
\(\left[\left(2x+1\right)+1\right]m:2=625\)
\(\Leftrightarrow\left[\left(2x+1\right)+1\right]\left\{\left[\left(2x+1\right)-1\right]:2+1\right\}=1250\)
\(\Leftrightarrow\left(2x+1\right)^2+1-1:2+1=1250\)
\(\Leftrightarrow\left(2x+1\right)^2+1-2+1=1250\)
\(\Leftrightarrow\left(2x+1\right)^2+1-2=1249\)
\(\Leftrightarrow\left(2x+1\right)^2+1=1251\)
\(\Leftrightarrow\left(2x+1\right)^2=1250\)
...
2
\(\left(x-\frac{1}{2}\right).\frac{5}{3}=\frac{7}{4}-\frac{1}{2}\)
\(\Leftrightarrow\left(x-\frac{1}{2}\right).\frac{5}{3}=\frac{5}{4}\)
\(\Leftrightarrow\left(x-\frac{1}{2}\right)=\frac{5}{4}:\frac{5}{3}\)
\(\Leftrightarrow\left(x-\frac{1}{2}\right)=\frac{5}{4}.\frac{3}{5}\)
\(\Leftrightarrow x-\frac{1}{2}=\frac{3}{4}\)
\(\Leftrightarrow x=\frac{3}{4}+\frac{1}{2}=\frac{5}{4}\)
Bài 2:
a) Ta có: \(\left|x-2\right|=\left|4-x\right|\)
\(\Leftrightarrow x-2=4-x\)
\(\Leftrightarrow2x=6\)
hay x=3
b) Ta có: \(\left(\left|2x-1\right|-3\right)\cdot\left(-2\right)+\left(-5\right)=6\)
\(\Leftrightarrow\left(\left|2x-1\right|-3\right)\cdot\left(-2\right)=11\)
\(\Leftrightarrow\left|2x-1\right|-3=\dfrac{-11}{2}\)
\(\Leftrightarrow\left|2x-1\right|=\dfrac{-11}{2}+\dfrac{6}{2}=\dfrac{-5}{2}\)(Vô lý)
`a, 1/2 +x=3/4`
`=> x= 3/4 -1/2`
`=> x= 3/4-2/4`
`=>x= 1/4`
`b, 5/2 -x=1/3`
`=> x= 5/2 -1/3`
`=> x= 15/6 - 2/6`
`=>x= 13/6`
`c, 2 . (1/3 +x)=1/5`
`=> 1/3 +x=1/5:2`
`=> 1/3 +x= 1/10`
`=>x= 1/10-1/3`
`=>x= 3/30 - 10/30`
`=>x=-7/30`
`d, 2/3 - (1/2 -x)=1/5`
`=> 1/2-x= 2/3 -1/5`
`=>1/2-x= 10/15 - 3/15`
`=>1/2-x=7/15`
`=>x= 1/2-7/15`
`=>x=1/30`
`1/2 + x = 3/4`
`=> x = 3/4 - 1/2`
`=> x = 1/4`
`5/2 - x = 1/3`
`=> x = 5/2 - 1/3`
`=> x = 13/6`
`2.(1/3 + x) = 1/5`
`=>1/3 + x = 1/10 `
`=> x = 1/10 - 1/3`
`=> x = -7/30`
`2/3 - (1/2 -x)= 1/5`
`=> 1/2 - x = 7/15`
`=> x = 1/2 - 7/15`
`=> x = 1/30`
b: Thay \(x=7-2\sqrt{6}\) vào A, ta được:
\(A=\dfrac{3\cdot\left(\sqrt{6}-1\right)}{-7+2\sqrt{6}-5\left(\sqrt{6}+1\right)-1}\)
\(=\dfrac{3\cdot\left(\sqrt{6}-1\right)}{-8+2\sqrt{6}-5\sqrt{6}-5}\)
\(=\dfrac{-3\sqrt{6}+3}{13+3\sqrt{6}}=\dfrac{93-48\sqrt{6}}{115}\)
Bài 1:
a) \(\dfrac{9}{20}-\dfrac{8}{15}\times\dfrac{5}{12}\)
\(=\dfrac{9}{20}-\dfrac{2}{9}\)
\(=\dfrac{41}{180}\)
b) \(\dfrac{2}{3}\div\dfrac{4}{5}\div\dfrac{7}{12}\)
\(=\dfrac{2}{3}\times\dfrac{5}{4}\times\dfrac{12}{7}\)
\(=\dfrac{5}{6}\times\dfrac{12}{7}\)
\(=\dfrac{10}{7}\)
c) \(\dfrac{7}{9}\times\dfrac{1}{3}+\dfrac{7}{9}\times\dfrac{2}{3}\)
\(=\dfrac{7}{9}\times\left(\dfrac{1}{3}+\dfrac{2}{3}\right)\)
\(=\dfrac{7}{9}\times1\)
\(=\dfrac{7}{9}\)
Bài 2:
a) \(2\times\left(x-1\right)=4026\)
\(\left(x-1\right)=4026\div2\)
\(x-1=2013\)
\(x=2014\)
Vậy: \(x=2014\)
b) \(x\times3,7+6,3\times x=320\)
\(x\times\left(3,7+6,3\right)=320\)
\(x\times10=320\)
\(x=320\div10\)
\(x=32\)
Vậy: \(x=32\)
c) \(0,25\times3< 3< 1,02\)
\(\Leftrightarrow0,75< 3< 1,02\) ( S )
=> \(0,75< 1,02< 3\)
Bài làm:
Ta có: \(x+\frac{1}{3}=x+\frac{2}{5}\)
\(\Leftrightarrow x-x=\frac{2}{5}-\frac{1}{3}\)
\(\Leftrightarrow0=\frac{1}{15}\)(vô lý)
Vậy không tồn tại x thỏa mãn PT
Học tốt!!!!