K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
5 tháng 7 2020

\(cosA=2sin\frac{B+C}{2}.cos\frac{B-C}{2}-\frac{3}{2}\)

\(\Leftrightarrow cosA=2cos\frac{A}{2}.cos\frac{B-C}{2}-\frac{3}{2}\)

\(\Leftrightarrow2cos^2\frac{A}{2}-1=2cos\frac{A}{2}cos\frac{B-C}{2}-\frac{3}{2}\)

\(\Leftrightarrow4cos^2\frac{A}{2}-4cos\frac{A}{2}cos\frac{B-C}{2}+1=0\)

\(\left\{{}\begin{matrix}cos\frac{A}{2}>0\\0< cos\frac{B-C}{2}\le1\end{matrix}\right.\) \(\Rightarrow cos\frac{A}{2}.cos\frac{B-C}{2}\le cos\frac{A}{2}\)

\(\Rightarrow4cos^2\frac{A}{2}-4cos\frac{A}{2}+1\le0\)

\(\Leftrightarrow\left(2cos\frac{A}{2}-1\right)^2\le0\)

BPT có nghiệm khi và chỉ khi:

\(\left\{{}\begin{matrix}2cos\frac{A}{2}-1=0\\B-C=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}cos\frac{A}{2}=\frac{1}{2}\\B=C\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}A=120^0\\B=C\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}A=120^0\\B=C=30^0\end{matrix}\right.\)

loading...  loading...  loading...  

27 tháng 4 2021

TL:

sinA+sinB+sinC=1-cosA+cosB+cosC => Tam giác ABC Vuông tại A

27 tháng 4 2021

Vế trái = sinA + sinB + sinC

= 2sin(A + B)/2.cos(A - B)/2 + 2sinC/2.cosC/2

= 2cosC/2.cos(A - B)/2 + 2sinC/2.cosC/2

= 2cosC/2[cos(A - B)/2 + sinC/2]

=2.cosC/2.[cos(A - B)/2 + cos(A + B)/2]

= 4.cosC/2.cosB/2.cosA/2

Vế phải = 1 - cosA + cosB + cosC

= 2sin²A/2 + 2cos(B + C)/2.cos(B - C)/2

= 2.sinA/2[sinA/2 + cos(B - C)/2] (vì cos(B + C)/2 = sinA/2)

= 2.sinA/2[cos(B + C)/2 + cos(B - C)/2

= 4.sinA/2.cosB/2.cosC/2

Vậy sinA + sinB + sinC = 1 - cosA + cosB + cosC

<=> cosA/2.cosB/2.cosC/2 = sinA/2.cosB/2.cosC/2

<=> cosB/2.cosC/2(sinA/2 - cosA/2) = 0

mà cosB/2 ≠ 0 và cosC/2 ≠ 0

=> sinA/2 = cosA/2

<=> A/2 = 45o

<=> A = 90o

tam giác ABC vuông tại A

10 tháng 12 2016

Đặt \(sinB=x\) , \(sinC=y\) 

Áp dụng BĐT Cauchy : \(\left(x+y\right)^2\ge4xy\Leftrightarrow\frac{x+y}{xy}\ge\frac{4}{x+y}\Leftrightarrow\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)

Đẳng thức xảy ra khi x = y , hay \(sinB=sinC\Rightarrow\widehat{B}=\widehat{C}\) , suy ra tam giác ABC cân.

NV
6 tháng 5 2019

\(2sinB.sinC=1+cosA\Leftrightarrow cos\left(B-C\right)-cos\left(B+C\right)=1+cosA\)

\(\Leftrightarrow cos\left(B-C\right)+cosA=1+cosA\)

\(\Leftrightarrow cos\left(B-C\right)=1\)

\(\Rightarrow B-C=0\Rightarrow B=C\)

\(sinA=\frac{cosA+cosB}{sinB+sinC}=\frac{cosA+cosB}{2sinB}\) (do \(B=C\))

\(\Leftrightarrow2sinA.sinB=cosA+cosB\)

\(\Leftrightarrow cos\left(A-B\right)-cos\left(A+B\right)=cosA+cosB\)

\(\Leftrightarrow cos\left(A-B\right)+cosC=cosA+cosB\)

\(\Leftrightarrow cos\left(A-B\right)+cosB=cosA+cosB\)

\(\Leftrightarrow cos\left(A-B\right)=cosB\)

\(\Rightarrow A-B=B\Rightarrow A=2B=B+C\)

\(A+B+C=180^0\Rightarrow2A=180^0\Rightarrow A=90^0\)

\(\Rightarrow\Delta ABC\) vuông cân tại A

7 tháng 9 2019

ta có

sinA + sinB – sinC = 4sin (A/2) sin(B/2) cos(C/2) (2)

suy ra điều phải chứng minh.

1 tháng 7 2021

1.

\(sinA+sinB-sinC=2sin\dfrac{A+B}{2}.cos\dfrac{A-B}{2}-sin\left(A+B\right)\)

\(=2sin\dfrac{A+B}{2}.cos\dfrac{A-B}{2}-2sin\dfrac{A+B}{2}.cos\dfrac{A+B}{2}\)

\(=2sin\dfrac{A+B}{2}.\left(cos\dfrac{A-B}{2}-cos\dfrac{A+B}{2}\right)\)

\(=2sin\dfrac{A+B}{2}.2sin\dfrac{A}{2}.sin\dfrac{B}{2}\)

\(=4sin\dfrac{A}{2}.sin\dfrac{B}{2}.cos\dfrac{C}{2}\)

Sao t lại đc như này v, ai check hộ phát