K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 4 2020

\(\frac{1}{2}+\frac{5}{6}+\frac{11}{12}+\frac{19}{20}+\frac{29}{30}+\frac{41}{42}+\frac{55}{56}+\frac{71}{72}+\frac{89}{90}\)

\(=9-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}\right)\)

\(=9-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}\right)\)

\(=9-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\right)\)

\(=9-\left(1-\frac{1}{10}\right)\)

\(=9-\frac{9}{10}\)

\(=\frac{81}{10}\)

Chú ý : dấu  "." này là tương đương với dấu nhân nhé ( x )

20 tháng 4 2020

Bài này dài quá nên khi mik làm nó cứ bị lệch dòng , thông cảm nhé : Trần Thanh Thảo  

12 tháng 4 2022

81/10

12 tháng 4 2022

refer

1/2+5/6+11/12+19/20+29/30+41/42+55/56+71/72+89/90
1-1/2+1-1/6+1-1/12+1-1/20+1-1/30+1-1/42+1-1/56+1-1/72+1-1/90
9 – (1/2+1/6+1/12+1/20+1/30+1/42+1/56+1/72+1/90)
9 –[1/(1x2)+1/(2x3)+1/(3x4)+1/(4x5)+1/(5x6)+1/(6x7)+1/(7x8)+1/(8x9)+1/(9x10)] 
9 – ( 1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8+1/8-1/9+1/9-1/10) 
9 – (1 – 1/10) = 9 – 9/10 = 81/10

25 tháng 6 2016

1/2 + 5/6 + 11/12 + ... + 89/90

= (1 - 1/2) + (1 - 1/6) + (1 - 1/12) + ... + (1 - 1/90)

= (1 - 1/1.2) + (1 - 1/2.3) +(1 - 1/3.4) + ... + (1 - 1/9.10)

= (1 + 1 + 1 + ... + 1) - (1/1.2 + 1/2.3 + 1/3.4 + ... + 1/9.10)

            9 số 1

= 9 - (1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/9 - 1/10)

= 9 - (1 - 1/10)

= 9 - 9/10

= 90/10 - 9/10

= 81/10

6 tháng 5 2015

\(\frac{1}{2}+\frac{5}{6}+\frac{19}{20}+\frac{29}{30}+\frac{41}{42}\)

\(=\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{6}\right)+\left(1-\frac{1}{12}\right)+\left(1-\frac{1}{20}\right)+\left(1-\frac{1}{30}\right)+\left(1-\frac{1}{42}\right)\)

\(=\left(1+1+1+1+1+1\right)-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}\right)\)

\(=6-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\right)\)

\(=6-\left(1-\frac{1}{7}\right)=6-\frac{6}{7}=\frac{36}{7}\)

5 tháng 5 2015

thì quy đồng lên mẫu là 420 rồi cộng với nhau ý bạn

4 tháng 9 2023

A = \(\dfrac{1}{2}\) + \(\dfrac{5}{6}\) + \(\dfrac{11}{12}\) + \(\dfrac{19}{20}\) + \(\dfrac{29}{30}\) + \(\dfrac{41}{42}\) + \(\dfrac{55}{56}\)

A = (1 - \(\dfrac{1}{2}\)) + ( 1 - \(\dfrac{1}{6}\)) + (1 - \(\dfrac{1}{12}\)) + (1 - \(\dfrac{1}{20}\)) +(1-\(\dfrac{1}{30}\))+(1-\(\dfrac{1}{42}\))+(1-\(\dfrac{1}{56}\))

A = (1 + 1+1 + 1 + 1+1+1)- (\(\dfrac{1}{2}\)+\(\dfrac{1}{6}\)+\(\dfrac{1}{12}\)+\(\dfrac{1}{20}\)+\(\dfrac{1}{30}\)+\(\dfrac{1}{42}\)+\(\dfrac{1}{56}\))

A = 7 - (\(\dfrac{1}{1\times2}\)+\(\dfrac{1}{2\times3}\)+\(\dfrac{1}{3\times4}\)+\(\dfrac{1}{4\times5}\)+\(\dfrac{1}{5\times6}\)+\(\dfrac{1}{6\times7}\)+\(\dfrac{1}{7\times8}\))

A = 7 - (\(\dfrac{1}{1}\) - \(\dfrac{1}{2}\)\(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) - \(\dfrac{1}{4}\) + \(\dfrac{1}{4}\) - \(\dfrac{1}{5}\) + \(\dfrac{1}{5}\) - \(\dfrac{1}{6}\)+\(\dfrac{1}{6}\)-\(\dfrac{1}{7}\)+\(\dfrac{1}{7}\)-\(\dfrac{1}{8}\))

A = 7 - (\(\dfrac{1}{1}\) - \(\dfrac{1}{8}\))

A = 7 - \(\dfrac{7}{8}\)

A = \(\dfrac{49}{8}\)

4 tháng 9 2023

Kq = 49/8 nha

13 tháng 9 2020

1/2+5/6+11/12+19/20+29/30+41/42+55/56+71/72+89/90
1-1/2+1-1/6+1-1/12+1-1/20+1-1/30+1-1/42+1-1/56+1-1/72+1-1/90
9 – (1/2+1/6+1/12+1/20+1/30+1/42+1/56+1/72+1/90)
9 – [1/(1x2)+1/(2x3)+1/(3x4)+1/(4x5)+1/(5x6)+1/(6x7)+1/(7x8)+1/(8x9)+1/(9x10)] 
9 – ( 1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8+1/8-1/9+1/9-1/10) 
9 – (1 – 1/10) = 9 – 9/10 = 81/10

15 tháng 9 2020

Cảm ơn bạn nha

16 tháng 7 2023

Bước 1: Tìm công thức chung của dãy phân số. Ta thấy rằng mẫu số của các phân số trong dãy là các số tự nhiên liên tiếp nhau từ 2 trở đi. Vậy ta có thể viết mẫu số của phân số thứ n là n+1. Còn tử số của phân số thứ n là tổng của các số tự nhiên từ 1 đến n. Vậy phân số thứ n có dạng: (1+2+3+...+n)/(n+1).

Bước 2: Tính tổng của các phân số trong dãy. Ta có công thức tổng của dãy phân số là: Tổng = (1+2+3+...+n)/(n+1). Vậy để tính tổng của 12 phân số trên, ta cần tính tổng của các số từ 1 đến 12 và chia cho 13.

Bước 3: Tính tổng các số từ 1 đến 12. Tổng các số từ 1 đến 12 là: 1+2+3+...+12 = 78.

Bước 4: Tính tổng của 12 phân số. Tổng = 78/13 = 6.

Vậy tổng của 12 phân số trên là 6.

16 tháng 7 2023

A = \(\dfrac{1}{2}\) + \(\dfrac{5}{6}\) + \(\dfrac{11}{12}\) + \(\dfrac{19}{20}\)\(\dfrac{29}{30}\)\(\dfrac{41}{42}\)+....+

A = \(\dfrac{1}{1\times2}\)\(\dfrac{5}{2\times3}\)+\(\dfrac{11}{3\times4}\)+...+

xét dãy số: 1; 2; 3; 4;...;

Dãy số trên là dãy số cách đều, với khoảng cách là 2-1 = 1

Số thứ 12 của dãy số trên là:  (12 - 1)\(\times\)1 + 1 = 12

Phân số thứ 12 của tổng A là: \(\dfrac{155}{12\times13}\) = \(\dfrac{155}{156}\)

A = \(\dfrac{1}{2}\)+\(\dfrac{5}{6}\)+\(\dfrac{11}{12}\)+\(\dfrac{19}{20}\)+\(\dfrac{29}{30}\)+\(\dfrac{41}{42}\)+...+\(\dfrac{155}{156}\)

A = 1 - \(\dfrac{1}{2}\) + 1 - \(\dfrac{1}{6}\)+1-\(\dfrac{1}{12}\)+1-\(\dfrac{1}{20}\)+1-\(\dfrac{1}{30}\)+1-\(\dfrac{1}{42}\)...+1-\(\dfrac{1}{156}\)

A = (1+1+...+1) - (\(\dfrac{1}{2}\)+\(\dfrac{1}{6}\)+..+\(\dfrac{1}{156}\))

A = 1\(\times\)12 - ( \(\dfrac{1}{1\times2}\)+\(\dfrac{1}{2\times3}\)+\(\dfrac{1}{3\times4}\)+...+\(\dfrac{1}{12\times13}\))

A = 12 - (\(\dfrac{1}{1}\) - \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\)\(\dfrac{1}{3}\) - \(\dfrac{1}{4}\) + \(\dfrac{1}{12}\)-\(\dfrac{1}{13}\))

A  = 12 - ( 1 - \(\dfrac{1}{13}\))

A = 12  - \(\dfrac{12}{13}\)

A = \(\dfrac{144}{13}\)

DD
2 tháng 6 2021

a) \(\frac{5}{6}+\frac{11}{12}+\frac{19}{20}+\frac{29}{30}+\frac{41}{42}+\frac{55}{56}+\frac{71}{72}+\frac{89}{90}\)

\(=1-\frac{1}{6}+1-\frac{1}{12}+1-\frac{1}{20}+1-\frac{1}{30}+1-\frac{1}{42}+1-\frac{1}{56}+1-\frac{1}{72}+1-\frac{1}{90}\)

\(=8-\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}\right)\)

\(=8-\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}\right)\)

\(=8-\left(\frac{3-2}{2.3}+\frac{4-3}{3.4}+\frac{5-4}{4.5}+\frac{6-5}{5.6}+\frac{7-6}{6.7}+\frac{8-7}{7.8}+\frac{9-8}{8.9}+\frac{10-9}{9.10}\right)\)

\(=8-\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\right)\)

\(=8-\left(\frac{1}{2}-\frac{1}{10}\right)=7,6\)

b) Bạn làm tương tự. 

15 tháng 10 2018

\(\frac{5}{6}+\frac{11}{12}+\frac{19}{20}+...+\frac{89}{90}\)

\(=1-\frac{1}{6}+1-\frac{1}{12}+1-\frac{1}{20}+...+1-\frac{1}{90}\)

\(=8-\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{90}\right)\)

\(=8-\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\right)\)

\(=8-\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{9}-\frac{1}{10}\right)\)

\(=8-\left(\frac{1}{2}-\frac{1}{10}\right)\)

\(=\frac{38}{5}\)

6 tháng 6 2021

100/11

hok tốt