giải hệ phương trình:xy=x+2y+3 và 4x3-y3=24x2-45x+15y+41
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
nhân chéo 2 vế của 2 pt, ta có
\(x^3-2y^3=\left(x+4y\right)\left(6x^2-19xy+15y^2\right)\)
sau khi rút gọc thì ta được pt
\(5x^3+5x^2y-61xy^2+62y^3=0\)
<=>\(\left(2y-x\right)\left(31y^2-15xy-5x^2\right)=0\)
đến đây thì tìm mối quan hệ giữa x và y rồi thay vào pt (2) để giải, nó sẽ trở thành pt bậc 2, nhưng sô sẽ hơi lẻ chút
^_^
giải hệ phương trình: \(\left\{{}\begin{matrix}x^3-2y^3=x+4y\\6x^2-19xy+15y^2=1\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x^3-2y^3=x+4y\left(1\right)\\6x^2-19xy+15y^2=1\left(2\right)\end{matrix}\right.\)
_ Xét y=0 không phải là nghiệm của hệ phương trình
_ Xét y\(\ne0\)
Đặt x=ty
Ta có (1)\(\Leftrightarrow t^3y^3-2y^3=ty+4y\Leftrightarrow t^3y^2-2y^2=t+4\Leftrightarrow y^2=\dfrac{t+4}{t^3-2}\left(3\right)\)
(2)\(\Leftrightarrow6t^2y^2-19ty^2+15y^2=1\Leftrightarrow y^2\left(6t^2-19t+15\right)=1\Leftrightarrow y^2=\dfrac{1}{6t^2-19t+15}\left(4\right)\)
Từ (3),(4)\(\Rightarrow\)\(\dfrac{t+4}{t^3-2}=\dfrac{1}{6t^2-19t+15}\Leftrightarrow t^3-2=\left(t+4\right)\left(6t^2-19t+15\right)\Leftrightarrow t^3-2=6t^3-19t^2+15t+24t^2-76t+60\Leftrightarrow5t^3+5t^2-61t+62=0\Leftrightarrow\left(t-2\right)\left(5t^2+15t-31\right)=0\Leftrightarrow\)\(\left[{}\begin{matrix}t=2\\t=\dfrac{-15+13\sqrt{5}}{10}\\t=\dfrac{-15-13\sqrt{5}}{10}\end{matrix}\right.\)
Từ đó tìm x,y
Xét hệ phương trình \(\hept{\begin{cases}x^3-y^3-15y-14=3\left(2y^2-x\right)\left(1\right)\\4x^3+6xy+15x+3=0\left(2\right)\end{cases}}\)
Ta có: \(\left(1\right)\Leftrightarrow x^3+3x=y^3+15y+6y^2+14\)\(\Leftrightarrow x^3+3x=y^3+6y^2+12y+8+3y+6\)
\(\Leftrightarrow x^3+3x=\left(y+2\right)^3+3\left(y+2\right)\Leftrightarrow x=y+2\)(*)
Từ (2) và (*), ta có hệ phương trình: \(\hept{\begin{cases}x=y+2\\4x^3+6xy+15x+3=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x-2=y\\4x^3+6x\left(x-2\right)+15x+3=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x-2=y\\4x^3+6x^2+3x+3=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x-2=y\\8x^3+12x^2+6x+6=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(2x+1\right)^3=-5\\x-2=y\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{-1-\sqrt[3]{5}}{2}\\y=\frac{-5-\sqrt[3]{5}}{2}\end{cases}}\)
Vậy hệ phương trình có một nghiệm duy nhất là \(\left(x;y\right)=\left(\frac{-1-\sqrt[3]{5}}{2};\frac{-5-\sqrt[3]{5}}{2}\right)\)
Ta có: \(\left\{{}\begin{matrix}5\left(x+2y\right)=3x-8\\2x+4=3x-15y-12\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}5x+10y-3x=-8\\2x-3x+15y=-12-4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x+10y=-8\\-x+15y=-16\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+5y=-4\\-x+15y=-16\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}20y=-20\\x+5y=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-1\\x=-4-5y=-4-5\cdot\left(-1\right)=-4+5=1\end{matrix}\right.\)
Vậy: (x,y)=(1;-1)
$\begin{cases}5(x+2y)=3x-8\\2x+4=3x-15y-12\end{cases}$
`<=>` $\begin{cases}5x+10y=3x-8\\x-15y=16\end{cases}$
`<=>` $\begin{cases}2x+10y=-8\\x-15y=16\end{cases}$
`<=>` $\begin{cases}x+4y=-4\\x-15y=16\end{cases}$
`<=>` $\begin{cases}19y=-20\\x=15y+16\end{cases}$
`<=>` $\begin{cases}y=-\dfrac{20}{19}\\x=\dfrac{4}{19}\end{cases}$