Cho 2 đường tròn (C) x2 +y2 -1=0 và (C'): x2 +y2 -2(m+1)x +4my -5=0. Tìm m để (C) và (C') tiếp xúc nhau
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Đây không phải là phương trình đường tròn do có \(xy\).
b) Vì \({a^2} + {b^2} - c = {1^2} + {2^2} - 5 = 0\)nên phương trình đã cho không là phương trình tròn.
c) Vì \({a^2} + {b^2} - c = {\left( { - 3} \right)^2} + {4^2} - 1 = 24 > 0\)nên phương trình đã cho là phương trình tròn có tâm \(I\left( { - 3;4} \right)\) và bán kính \(R = \sqrt {{a^2} + {b^2} - c} = 2\sqrt 6 \).
![](https://rs.olm.vn/images/avt/0.png?1311)
Đáp án D
Gọi d là đường thẳng qua M có véc tơ chỉ phương:
- Đường tròn (C1) tâm I1 (1;1) và R1= 1
Đường tròn (C2) : tâm I2( -2;0) và R2= 3
- Nếu d cắt (C1) tại A :
- Nếu d cắt (C2) tại B:
- Theo giả thiết: MA= 2 MB nên MA2= 4 MB2 (*)
- Ta có :
![](https://rs.olm.vn/images/avt/0.png?1311)
Đường tròn đã cho có tâm I − 3 2 ; 5 2
Bán kính đường tròn là: R = − 3 2 2 + 5 2 2 + 2 = 21 2
Độ dài I M = − 2 + 3 2 2 + 1 − 5 2 2 = 5 2 < R
Do đó, điểm M nằm trong đường tròn.
Qua M không kẻ được tiếp tuyến nào đến đường tròn.
ĐÁP ÁN A
![](https://rs.olm.vn/images/avt/0.png?1311)
Đường tròn (C): x 2 + y 2 + 4 x − 2 y − 4 = 0 có tâm I(-2; 1) và bán kính R = 3.
Ta có : I M = 1 + 2 2 + 2 − 1 2 = 10 > 3 nên M nằm ngoài đường tròn.
Qua M kẻ được hai tiếp tuyến đến đường tròn.
ĐÁP ÁN C
![](https://rs.olm.vn/images/avt/0.png?1311)
(C): x 2 + y 2 − 4 x + 2 y − 15 = 0 và đường thẳng ∆: - 4x + 3y + 1 = 0.
Đường tròn (C): x 2 + y 2 − 4 x + 2 y − 15 = 0 có tâm I(2; -1) và bán kính R = 20 .
Khoảng cách d I , ∆ = − 4.2 + 3. − 1 + 1 5 = 2 < R nên đường thẳng cắt đường tròn tại hai điểm phân biệt A, B cách nhau một khoảng là
A B = 2 R 2 − d I , ∆ 2 = 8 .
ĐÁP ÁN C
![](https://rs.olm.vn/images/avt/0.png?1311)
Đáp án: A
Ta có:
(C): x 2 + y 2 + 2x + 2y - 2 = 0 ⇔ (x + 1 ) 2 + (y + 1 ) 2 = 4 ⇒ I(-1;-1)
Phương trình tiếp tuyến của đường tròn tại M là đường thẳng đi qua M và nhận vector IM = (0;2) làm vecto pháp tuyến: 0.(x + 1) + 2.(y - 1) = 0 ⇔ y - 1 = 0
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta sẽ xét xem trong 3 điểm A, B, C điểm nào nằm trong, điểm nào nằm ngoài đường tròn. Từ đó ta sẽ biết được đường tròn cắt những cạnh nào của tam giác ABC.
Ta có: ( - 1 ) 2 + 2 2 + 3 . ( - 1 ) - 5 . 2 + 2 = - 6 < 0 nên điểm A nằm trong đường tròn
3 2 + 0 2 + 3 . 3 – 5 . 0 + 2 = 15 > 0 nên điểm B nằm ngoài đường tròn
Và 2 2 + 3 2 + 3 . 2 - 5 . 3 + 2 = 4 > 0 nên điểm C nằm ngoài đường tròn.
Do vậy đường tròn cắt hai cạnh của tam giác là AB và AC.
Chọn C.
Đường tròn (C) tâm \(A\left(0;0\right)\) bán kính \(R=1\)
Đường tròn \(\left(C'\right)\) tâm \(B\left(m+1;-2m\right)\) bán kính \(r=\sqrt{5m^2+2m+6}\)
TH1: 2 đường tròn tiếp xúc ngoài
\(\Leftrightarrow AB=R+r'\)
\(\Rightarrow\sqrt{5m^2+2m+1}=1+\sqrt{5m^2+2m+6}\)
Đặt \(\sqrt{5m^2+2m+1}=t>0\)
\(\Rightarrow t=1+\sqrt{t^2+5}\)
\(\Leftrightarrow\sqrt{t^2+5}=t-1\left(t\ge1\right)\)
\(\Leftrightarrow t^2+5=t^2-2t+1\)
\(\Rightarrow t=-2\left(l\right)\)
TH2: 2 đường tròn tiếp xúc trong
\(\Rightarrow AB=r-R\)
\(\Leftrightarrow\sqrt{5m^2+2m+1}=\sqrt{5m^2+2m+6}-1\)
Đặt \(\sqrt{5m^2+2m+1}=t>0\)
\(\Rightarrow t=\sqrt{t^2+5}-1\)
\(\Leftrightarrow t+1=\sqrt{t^2+5}\)
\(\Leftrightarrow t^2+2t+1=t^2+5\Rightarrow t=2\)
\(\Rightarrow\sqrt{5m^2+2m+1}=2\)
\(\Leftrightarrow5m^2+2m-3=0\Rightarrow\left[{}\begin{matrix}m=-1\\m=\frac{3}{5}\end{matrix}\right.\)