Tìm GTLN của M = 2021 – |5 – 2x| – |2x – 3|
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3:
Ta có: \(\left(2x+1\right)^2\ge0\forall x\)
\(\Leftrightarrow\left(2x+1\right)^2+2021\ge2021\forall x\)
Dấu '=' xảy ra khi \(x=-\dfrac{1}{2}\)
Ta có: \(Q=-x^2-2x+2021\)
\(=-\left(x^2+2x+1-2022\right)\)
\(=-\left(x+1\right)^2+2022\le2022\forall x\)
Dấu '=' xảy ra khi x=-1
\(Q=-\left(x^2+2x+1\right)+2022\)
\(Q=-\left(x+1\right)^2+2022\le2022\)
\(Q_{max}=2022\) khi \(x=-1\)
hông biết mới học lớp 6 làm seo biết đc toán lớp 8 tự nghĩ đi nha
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
\(y\le\sqrt{2\left(6-2x+3+2x\right)}=3\sqrt{2}\)
\(y_{max}=3\sqrt{2}\) khi \(x=\dfrac{3}{4}\)
\(y\ge\sqrt{6-2x+3+2x}=3\)
\(y_{min}=3\) khi \(\left[{}\begin{matrix}x=3\\x=-\dfrac{3}{2}\end{matrix}\right.\)
\(a,\Leftrightarrow6x-9+4-2x=-3\Leftrightarrow4x=2\Leftrightarrow x=\dfrac{1}{2}\\ b,\Leftrightarrow\left(x-2021\right)\left(x-6\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2021\\x=6\end{matrix}\right.\\ c,\Leftrightarrow\left(2x-3-6x\right)\left(2x-3+6x\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}-3-4x=0\\8x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{3}{4}\\x=\dfrac{3}{8}\end{matrix}\right.\)
\(M=2021-\left(|5-2x|+|2x-3|\right);G=\left(|5-2x|+|2x-3|\right)\ge|5-2x+2x-3|=2\)
do đó: \(M\le2021-2=2019\)
Ta có :
M = 2021 – |5 – 2x| – |2x – 3| =>M\(\le\)2021-2=2019
=>M\(\le\)2019
Dấu "=" xảy ra khi M=2019
Vậy GTLN của M là 2019