CMR:
B=1/2^2 + 1/3^2 + 1/4^2 +1/5^2 + 1/6^2 +1/7^2 +1/8^2 < 1
giúp mk nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{7.8}.\)
\(B< \frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{8-7}{7.8}\)
\(B< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{7}-\frac{1}{8}\)
\(B< 1-\frac{1}{8}< 1\)
\(-\frac{1}{10}< =x< =\frac{3}{5}\)
\(\frac{-4}{9}< x< =\frac{2}{3}\)
a) Ta có: \(A=\dfrac{16^8-1}{\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)}\)
\(=\dfrac{2^{32}-1}{\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)}\)
\(=\dfrac{2^{32}-1}{\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)}\)
\(=\dfrac{2^{32}-1}{\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)}\)
\(=\dfrac{2^{32}-1}{\left(2^{16}-1\right)\left(2^{16}+1\right)}\)
\(=\dfrac{2^{32}-1}{2^{32}-1}=1\)
b) Ta có: \(B=\dfrac{\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)}{9^{16}-1}\)
\(=\dfrac{\left(3^2-1\right)\cdot\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)}{2\cdot\left(3^{32}-1\right)}\)
\(=\dfrac{\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)}{2\cdot\left(3^{32}-1\right)}\)
\(=\dfrac{\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)}{2\left(3^{32}-1\right)}\)
\(=\dfrac{\left(3^{16}-1\right)\left(3^{16}+1\right)}{2\left(3^{32}-1\right)}=\dfrac{1}{2}\)
1+2+3+4+5+6+7+8+9+1+2+3+4+5+6+7+8+9+1+2+3+4+5+6+7+8+9+1028=(1+2+3+4+5+6+7+8+9)x3+1028=45x3+1028=135+1028=1163
a: x>-3/5 nên x+3/5>0
x<1/7 nên x-1/7<0
A=1/7-x-(x+3/5)+4/5
=1/7-2x-3/5+4/5
=-2x+12/35
b: \(B=\left|-x+\dfrac{1}{7}\right|+\left|-x-\dfrac{3}{5}\right|-\dfrac{2}{6}\)
\(=\left|x-\dfrac{1}{7}\right|+\left|x+\dfrac{3}{5}\right|-\dfrac{1}{3}\)
-3/5<x<1/7
nên x-1/7<0; x+3/5>0
\(B=\dfrac{1}{7}-x+x+\dfrac{3}{5}-\dfrac{1}{3}=\dfrac{43}{105}\)
c: \(C=\left|\dfrac{11}{5}-x\right|+\left|x-\dfrac{1}{5}\right|+\dfrac{41}{5}\)
\(=\left|x-\dfrac{11}{5}\right|+\left|x-\dfrac{1}{5}\right|+\dfrac{41}{5}\)
Nếu 1/5<x<11/5 nên x-1/5>0; x-11/5<0
\(C=\dfrac{11}{5}-x+x-\dfrac{1}{5}+\dfrac{41}{5}=\dfrac{51}{5}\)
a: x>-3/5 nên x+3/5>0
x<1/7 nên x-1/7<0
A=1/7-x-(x+3/5)+4/5
=1/7-2x-3/5+4/5
=-2x+12/35
b: \(B=\left|-x+\dfrac{1}{7}\right|+\left|-x-\dfrac{3}{5}\right|-\dfrac{2}{6}\)
\(=\left|x-\dfrac{1}{7}\right|+\left|x+\dfrac{3}{5}\right|-\dfrac{1}{3}\)
-3/5<x<1/7
nên x-1/7<0; x+3/5>0
\(B=\dfrac{1}{7}-x+x+\dfrac{3}{5}-\dfrac{1}{3}=\dfrac{43}{105}\)
c: \(C=\left|\dfrac{11}{5}-x\right|+\left|x-\dfrac{1}{5}\right|+\dfrac{41}{5}\)
\(=\left|x-\dfrac{11}{5}\right|+\left|x-\dfrac{1}{5}\right|+\dfrac{41}{5}\)
Nếu 1/5<x<11/5 nên x-1/5>0; x-11/5<0
\(C=\dfrac{11}{5}-x+x-\dfrac{1}{5}+\dfrac{41}{5}=\dfrac{51}{5}\)
b1
a) \(\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}+\dfrac{1}{8.9}+\dfrac{1}{9.10}\)
\(=\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}\)
\(=\dfrac{1}{5}-\dfrac{1}{10}\)
\(=\dfrac{2}{10}-\dfrac{1}{10}\)
\(=\dfrac{1}{10}\)
b) \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}\)
\(=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(=\dfrac{1}{1}-\dfrac{1}{100}\)
\(=\dfrac{99}{100}\)
c) \(\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+\dfrac{2}{9.11}\)
\(=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{11}\)
\(=\dfrac{1}{3}-\dfrac{1}{11}\)
\(=\dfrac{8}{33}\)
d) \(\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{99.101}\)
\(=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\)
\(=\dfrac{1}{3}-\dfrac{1}{101}\)
\(=\dfrac{98}{303}\)
Ta có : \(\frac{1}{2^2}=\frac{1}{4}< \frac{1}{1.2}\)
\(\frac{1}{3^2}=\frac{1}{9}< \frac{1}{2.3}\)
\(\frac{1}{4^2}=\frac{1}{16}< \frac{1}{3.4}\)
......
\(\frac{1}{8^2}=\frac{1}{64}< \frac{1}{7.8}\)
Ta có : \(VP< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{7.8}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{7}-\frac{1}{8}\)
\(=1-\frac{1}{8}=\frac{7}{8}\)
Mà \(\frac{7}{8}< 1\)Nên \(B< 1\left(đpcm\right)\)
\(B=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+\frac{1}{8^2}\)
Ta có : \(\frac{1}{2^2}=\frac{1}{2\cdot2}< \frac{1}{1\cdot2}\)
\(\frac{1}{3^2}=\frac{1}{3\cdot3}< \frac{1}{2\cdot3}\)
...
\(\frac{1}{8^2}=\frac{1}{8\cdot8}< \frac{1}{7\cdot8}\)
=> \(B=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+\frac{1}{8^2}< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{7\cdot8}\)
=> \(B< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{7}-\frac{1}{8}\)
=> \(B< \frac{1}{1}-\frac{1}{8}=\frac{7}{8}\)
Lại có : \(\frac{7}{8}< 1\)
=> \(B< \frac{7}{8}< 1\Rightarrow B< 1\left(đpcm\right)\)